Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
1.
ArXiv ; 2024 May 01.
Article in English | MEDLINE | ID: mdl-38745697

ABSTRACT

One of the central objectives of contemporary neuroimaging research is to create predictive models that can disentangle the connection between patterns of functional connectivity across the entire brain and various behavioral traits. Previous studies have shown that models trained to predict behavioral features from the individual's functional connectivity have modest to poor performance. In this study, we trained models that predict observable individual traits (phenotypes) and their corresponding singular value decomposition (SVD) representations - herein referred to as latent phenotypes from resting state functional connectivity. For this task, we predicted phenotypes in two large neuroimaging datasets: the Human Connectome Project (HCP) and the Philadelphia Neurodevelopmental Cohort (PNC). We illustrate the importance of regressing out confounds, which could significantly influence phenotype prediction. Our findings reveal that both phenotypes and their corresponding latent phenotypes yield similar predictive performance. Interestingly, only the first five latent phenotypes were reliably identified, and using just these reliable phenotypes for predicting phenotypes yielded a similar performance to using all latent phenotypes. This suggests that the predictable information is present in the first latent phenotypes, allowing the remainder to be filtered out without any harm in performance. This study sheds light on the intricate relationship between functional connectivity and the predictability and reliability of phenotypic information, with potential implications for enhancing predictive modeling in the realm of neuroimaging research.

2.
J Cogn Neurosci ; : 1-19, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38739568

ABSTRACT

Socially guided visual attention, such as gaze following and joint attention, represents the building block of higher-level social cognition in primates, although their neurodevelopmental processes are still poorly understood. Atypical development of these social skills has served as early marker of autism spectrum disorder and Williams syndrome. In this study, we trace the developmental trajectories of four neural networks underlying visual and attentional social engagement in the translational rhesus monkey model. Resting-state fMRI (rs-fMRI) data and gaze following skills were collected in infant rhesus macaques from birth through 6 months of age. Developmental trajectories from subjects with both resting-state fMRI and eye-tracking data were used to explore brain-behavior relationships. Our findings indicate robust increases in functional connectivity (FC) between primary visual areas (primary visual cortex [V1] - extrastriate area 3 [V3] and V3 - middle temporal area, ventral motion areas middle temporal area - AST, as well as between TE and amygdala (AMY) as infants mature. Significant FC decreases were found in more rostral areas of the pathways, such as areas temporal area occipital part - TE in the ventral object pathway, V3 - lateral intraparietal (LIP) of the dorsal visual attention pathway and V3 - temporo-parietal area of the ventral attention pathway. No changes in FC were found between cortical areas LIP-FEF and temporo-parietal area - Area 12 of the dorsal and ventral attention pathways or between AST-AMY and AMY-insula. Developmental trajectory of gaze following revealed a period of dynamic changes with gradual increases from 1 to 2 months, followed by slight decreases from 3 to 6 months. Exploratory association findings across the 6-month period showed that infants with higher gaze following had lower FC between primary visual areas V1-V3, but higher FC in the dorsal attention areas V3-LIP, both in the right hemisphere. Together, the first 6 months of life in rhesus macaques represent a critical period for the emergence of gaze following skills associated with maturational changes in FC of socially guided attention pathways.

3.
Nat Neurosci ; 27(5): 1000-1013, 2024 May.
Article in English | MEDLINE | ID: mdl-38532024

ABSTRACT

Although the general location of functional neural networks is similar across individuals, there is vast person-to-person topographic variability. To capture this, we implemented precision brain mapping functional magnetic resonance imaging methods to establish an open-source, method-flexible set of precision functional network atlases-the Masonic Institute for the Developing Brain (MIDB) Precision Brain Atlas. This atlas is an evolving resource comprising 53,273 individual-specific network maps, from more than 9,900 individuals, across ages and cohorts, including the Adolescent Brain Cognitive Development study, the Developmental Human Connectome Project and others. We also generated probabilistic network maps across multiple ages and integration zones (using a new overlapping mapping technique, Overlapping MultiNetwork Imaging). Using regions of high network invariance improved the reproducibility of executive function statistical maps in brain-wide associations compared to group average-based parcellations. Finally, we provide a potential use case for probabilistic maps for targeted neuromodulation. The atlas is expandable to alternative datasets with an online interface encouraging the scientific community to explore and contribute to understanding the human brain function more precisely.


Subject(s)
Brain , Connectome , Magnetic Resonance Imaging , Humans , Magnetic Resonance Imaging/methods , Brain/physiology , Brain/diagnostic imaging , Adolescent , Male , Female , Adult , Young Adult , Nerve Net/physiology , Nerve Net/diagnostic imaging , Brain Mapping/methods , Atlases as Topic , Child , Probability , Neural Pathways/physiology
5.
Dev Cogn Neurosci ; 66: 101355, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38354531

ABSTRACT

Prior research suggests that the organization of the language network in the brain is left-dominant and becomes more lateralized with age and increasing language skill. The age at which specific components of the language network become adult-like varies depending on the abilities they subserve. So far, a large, developmental study has not included a language task paradigm, so we introduce a method to study resting-state laterality in the Adolescent Brain Cognitive Development (ABCD) study. Our approach mixes source timeseries between left and right homotopes of the (1) inferior frontal and (2) middle temporal gyri and (3) a region we term "Wernicke's area" near the supramarginal gyrus. Our large subset sample size of ABCD (n = 6153) allows improved reliability and validity compared to previous, smaller studies of brain-behavior associations. We show that behavioral metrics from the NIH Youth Toolbox and other resources are differentially related to tasks with a larger linguistic component over ones with less (e.g., executive function-dominant tasks). These baseline characteristics of hemispheric specialization in youth are critical for future work determining the correspondence of lateralization with language onset in earlier stages of development.

6.
bioRxiv ; 2024 Jan 12.
Article in English | MEDLINE | ID: mdl-38260520

ABSTRACT

Heritability of regional subcortical brain volumes (rSBVs) describes the role of genetics in middle and inner brain development. rSBVs are highly heritable in adults but are not characterized well in adolescents. The Adolescent Brain Cognitive Development study (ABCD), taken over 22 US sites, provides data to characterize the heritability of subcortical structures in adolescence. In ABCD, site-specific effects co-occur with genetic effects which can bias heritability estimates. Existing methods adjusting for site effects require additional steps to adjust for site effects and can lead to inconsistent estimation. We propose a random-effect model-based method of moments approach that is a single step estimator and is a theoretically consistent estimator even when sites are imbalanced and performs well under simulations. We compare methods on rSBVs from ABCD. The proposed approach yielded heritability estimates similar to previous results derived from single-site studies. The cerebellum cortex and hippocampus were the most heritable regions (> 50%).

7.
ArXiv ; 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-37744469

ABSTRACT

The Brain Imaging Data Structure (BIDS) is a community-driven standard for the organization of data and metadata from a growing range of neuroscience modalities. This paper is meant as a history of how the standard has developed and grown over time. We outline the principles behind the project, the mechanisms by which it has been extended, and some of the challenges being addressed as it evolves. We also discuss the lessons learned through the project, with the aim of enabling researchers in other domains to learn from the success of BIDS.

8.
Br J Anaesth ; 131(6): 1030-1042, 2023 12.
Article in English | MEDLINE | ID: mdl-37714750

ABSTRACT

BACKGROUND: Clinical studies suggest that anaesthesia exposure early in life affects neurobehavioural development. We designed a non-human primate (NHP) study to evaluate cognitive, behavioural, and brain functional and structural alterations after isoflurane exposure during infancy. These NHPs displayed decreased close social behaviour and increased astrogliosis in specific brain regions, most notably in the amygdala. Here we hypothesise that resting-state functional connectivity MRI can detect alterations in connectivity of brain areas that relate to these social behaviours and astrogliosis. METHODS: Imaging was performed in 2-yr-old NHPs under light anaesthesia, after early-in-life (postnatal days 6-12) exposure to 5 h of isoflurane either one or three times, or to room air. Brain images were segmented into 82 regions of interest; the amygdala and the posterior cingulate cortex were chosen for a seed-based resting-state functional connectivity MRI analysis. RESULTS: We found differences between groups in resting-state functional connectivity of the amygdala and the auditory cortices, medial premotor cortex, and posterior cingulate cortex. There were also alterations in resting-state functional connectivity between the posterior cingulate cortex and secondary auditory, polar prefrontal, and temporal cortices, and the anterior insula. Relationships were identified between resting-state functional connectivity alterations and the decrease in close social behaviour and increased astrogliosis. CONCLUSIONS: Early-in-life anaesthesia exposure in NHPs is associated with resting-state functional connectivity alterations of the amygdala and the posterior cingulate cortex with other brain regions, evident at the juvenile age of 2 yr. These changes in resting-state functional connectivity correlate with the decrease in close social behaviour and increased astrogliosis. Using resting-state functional connectivity MRI to study the neuronal underpinnings of early-in-life anaesthesia-induced behavioural alterations could facilitate development of a biomarker for anaesthesia-induced developmental neurotoxicity.


Subject(s)
Isoflurane , Animals , Isoflurane/adverse effects , Gliosis , Brain/diagnostic imaging , Gyrus Cinguli/diagnostic imaging , Magnetic Resonance Imaging/methods , Primates , Brain Mapping/methods , Neural Pathways/diagnostic imaging , Neural Pathways/physiology
9.
Cereb Cortex ; 33(15): 9250-9262, 2023 07 24.
Article in English | MEDLINE | ID: mdl-37293735

ABSTRACT

The thalamus is a critical relay center for neural pathways involving sensory, motor, and cognitive functions, including cortico-striato-thalamo-cortical and cortico-ponto-cerebello-thalamo-cortical loops. Despite the importance of these circuits, their development has been understudied. One way to investigate these pathways in human development in vivo is with functional connectivity MRI, yet few studies have examined thalamo-cortical and cerebello-cortical functional connectivity in development. Here, we used resting-state functional connectivity to measure functional connectivity in the thalamus and cerebellum with previously defined cortical functional networks in 2 separate data sets of children (7-12 years old) and adults (19-40 years old). In both data sets, we found stronger functional connectivity between the ventral thalamus and the somatomotor face cortical functional network in children compared with adults, extending previous cortico-striatal functional connectivity findings. In addition, there was more cortical network integration (i.e. strongest functional connectivity with multiple networks) in the thalamus in children than in adults. We found no developmental differences in cerebello-cortical functional connectivity. Together, these results suggest different maturation patterns in cortico-striato-thalamo-cortical and cortico-ponto-cerebellar-thalamo-cortical pathways.


Subject(s)
Cerebellum , Magnetic Resonance Imaging , Adult , Child , Humans , Young Adult , Cerebellum/diagnostic imaging , Neural Pathways/diagnostic imaging , Thalamus/diagnostic imaging , Corpus Striatum
10.
Dev Cogn Neurosci ; 60: 101234, 2023 04.
Article in English | MEDLINE | ID: mdl-37023632

ABSTRACT

Functional MRI (fMRI) data acquired using echo-planar imaging (EPI) are highly distorted by magnetic field inhomogeneities. Distortion and differences in image contrast between EPI and T1-weighted and T2-weighted (T1w/T2w) images makes their alignment a challenge. Typically, field map data are used to correct EPI distortions. Alignments achieved with field maps can vary greatly and depends on the quality of field map data. However, many public datasets lack field map data entirely. Additionally, reliable field map data is often difficult to acquire in high-motion pediatric or developmental cohorts. To address this, we developed Synth, a software package for distortion correction and cross-modal image registration that does not require field map data. Synth combines information from T1w and T2w anatomical images to construct an idealized undistorted synthetic image with similar contrast properties to EPI data. This synthetic image acts as an effective reference for individual-specific distortion correction. Using pediatric (ABCD: Adolescent Brain Cognitive Development) and adult (MSC: Midnight Scan Club; HCP: Human Connectome Project) data, we demonstrate that Synth performs comparably to field map distortion correction approaches, and often outperforms them. Field map-less distortion correction with Synth allows accurate and precise registration of fMRI data with missing or corrupted field map information.


Subject(s)
Algorithms , Image Processing, Computer-Assisted , Adult , Humans , Child , Adolescent , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Echo-Planar Imaging/methods , Brain/diagnostic imaging , Artifacts
11.
Dev Cogn Neurosci ; 60: 101231, 2023 04.
Article in English | MEDLINE | ID: mdl-36934605

ABSTRACT

Resting-state functional connectivity (RSFC) is a powerful tool for characterizing brain changes, but it has yet to reliably predict higher-order cognition. This may be attributed to small effect sizes of such brain-behavior relationships, which can lead to underpowered, variable results when utilizing typical sample sizes (N∼25). Inspired by techniques in genomics, we implement the polyneuro risk score (PNRS) framework - the application of multivariate techniques to RSFC data and validation in an independent sample. Utilizing the Adolescent Brain Cognitive Development® cohort split into two datasets, we explore the framework's ability to reliably capture brain-behavior relationships across 3 cognitive scores - general ability, executive function, learning & memory. The weight and significance of each connection is assessed in the first dataset, and a PNRS is calculated for each participant in the second. Results support the PNRS framework as a suitable methodology to inspect the distribution of connections contributing towards behavior, with explained variance ranging from 1.0 % to 21.4 %. For the outcomes assessed, the framework reveals globally distributed, rather than localized, patterns of predictive connections. Larger samples are likely necessary to systematically identify the specific connections contributing towards complex outcomes. The PNRS framework could be applied translationally to identify neurologically distinct subtypes of neurodevelopmental disorders.


Subject(s)
Brain Mapping , Cognition , Adolescent , Humans , Brain Mapping/methods , Brain , Risk Factors , Executive Function , Magnetic Resonance Imaging/methods
12.
Dev Cogn Neurosci ; 60: 101213, 2023 04.
Article in English | MEDLINE | ID: mdl-36774827

ABSTRACT

Differences in looking at the eyes of others are one of the earliest behavioral markers for social difficulties in neurodevelopmental disabilities, including autism. However, it is unknown how early visuo-social experiences relate to the maturation of infant brain networks that process visual social stimuli. We investigated functional connectivity (FC) within the ventral visual object pathway as a contributing neural system. Densely sampled, longitudinal eye-tracking and resting state fMRI (rs-fMRI) data were collected from infant rhesus macaques, an important model of human social development, from birth through 6 months of age. Mean trajectories were fit for both datasets and individual trajectories from subjects with both eye-tracking and rs-fMRI data were used to test for brain-behavior relationships. Exploratory findings showed infants with greater increases in FC between left V1 to V3 visual areas have an earlier increase in eye-looking before 2 months. This relationship was moderated by social status such that infants with low social status had a stronger association between left V1 to V3 connectivity and eye-looking than high status infants. Results indicated that maturation of the visual object pathway may provide an important neural substrate supporting adaptive transitions in social visual attention during infancy.


Subject(s)
Autistic Disorder , Visual Pathways , Animals , Humans , Infant , Macaca mulatta , Social Status , Brain , Magnetic Resonance Imaging/methods
13.
Sci Rep ; 12(1): 15220, 2022 09 08.
Article in English | MEDLINE | ID: mdl-36076053

ABSTRACT

Nutrition during the first years of life has a significant impact on brain development. This study characterized differences in brain maturation from birth to 6 months of life in infant macaques fed formulas differing in content of lutein, ß-carotene, and other carotenoids using Magnetic Resonance Imaging to measure functional connectivity. We observed differences in functional connectivity based on the interaction of diet, age and brain networks. Post hoc analysis revealed significant diet-specific differences between insular-opercular and somatomotor networks at 2 months of age, dorsal attention and somatomotor at 4 months of age, and within somatomotor and between somatomotor-visual and auditory-dorsal attention networks at 6 months of age. Overall, we found a larger divergence in connectivity from the breastfeeding group in infant macaques fed formula containing no supplemental carotenoids in comparison to those fed formula supplemented with carotenoids. These findings suggest that carotenoid formula supplementation influences functional brain development.


Subject(s)
Carotenoids , Macaca , Animals , Food, Formulated , Humans , Lutein/pharmacology , beta Carotene
14.
Sci Data ; 9(1): 518, 2022 08 25.
Article in English | MEDLINE | ID: mdl-36008415

ABSTRACT

The NIMH Healthy Research Volunteer Dataset is a collection of phenotypic data characterizing healthy research volunteers using clinical assessments such as assays of blood and urine, mental health assessments, diagnostic and dimensional measures of mental health, cognitive and neuropsychological functioning, structural and functional magnetic resonance imaging (MRI), along with diffusion tensor imaging (DTI), and a comprehensive magnetoencephalography battery (MEG). In addition, blood samples of healthy volunteers are banked for future analyses. All data collected in this protocol are broadly shared in the OpenNeuro repository, in the Brain Imaging Data Structure (BIDS) format. In addition, task paradigms and basic pre-processing scripts are shared on GitHub. There are currently few open access MEG datasets, and multimodal neuroimaging datasets are even more rare. Due to its depth of characterization of a healthy population in terms of brain health, this dataset may contribute to a wide array of secondary investigations of non-clinical and clinical research questions.


Subject(s)
Diffusion Tensor Imaging , Magnetoencephalography , Brain/diagnostic imaging , Healthy Volunteers , Humans , Magnetic Resonance Imaging , National Institute of Mental Health (U.S.) , Neuroimaging/methods , United States
15.
Dev Cogn Neurosci ; 56: 101123, 2022 08.
Article in English | MEDLINE | ID: mdl-35751994

ABSTRACT

Resting-state functional connectivity (rsFC) measured with fMRI has been used to characterize functional brain maturation in typically and atypically developing children and adults. However, its reliability and utility for predicting development in infants and toddlers is less well understood. Here, we use fMRI data from the Baby Connectome Project study to measure the reliability and uniqueness of rsFC in infants and toddlers and predict age in this sample (8-to-26 months old; n = 170). We observed medium reliability for within-session infant rsFC in our sample, and found that individual infant and toddler's connectomes were sufficiently distinct for successful functional connectome fingerprinting. Next, we trained and tested support vector regression models to predict age-at-scan with rsFC. Models successfully predicted novel infants' age within ± 3.6 months error and a prediction R2 = .51. To characterize the anatomy of predictive networks, we grouped connections into 11 infant-specific resting-state functional networks defined in a data-driven manner. We found that connections between regions of the same network-i.e. within-network connections-predicted age significantly better than between-network connections. Looking ahead, these findings can help characterize changes in functional brain organization in infancy and toddlerhood and inform work predicting developmental outcome measures in this age range.


Subject(s)
Connectome , Adult , Brain , Child, Preschool , Humans , Infant , Magnetic Resonance Imaging , Reproducibility of Results
16.
Dev Cogn Neurosci ; 55: 101116, 2022 06.
Article in English | MEDLINE | ID: mdl-35636344

ABSTRACT

Imaging the infant brain with MRI has improved our understanding of early neurodevelopment. However, head motion during MRI acquisition is detrimental to both functional and structural MRI scan quality. Though infants are typically scanned while asleep, they commonly exhibit motion during scanning causing data loss. Our group has shown that providing MRI technicians with real-time motion estimates via Framewise Integrated Real-Time MRI Monitoring (FIRMM) software helps obtain high-quality, low motion fMRI data. By estimating head motion in real time and displaying motion metrics to the MR technician during an fMRI scan, FIRMM can improve scanning efficiency. Here, we compared average framewise displacement (FD), a proxy for head motion, and the amount of usable fMRI data (FD ≤ 0.2 mm) in infants scanned with (n = 407) and without FIRMM (n = 295). Using a mixed-effects model, we found that the addition of FIRMM to current state-of-the-art infant scanning protocols significantly increased the amount of usable fMRI data acquired per infant, demonstrating its value for research and clinical infant neuroimaging.


Subject(s)
Artifacts , Head Movements , Brain/diagnostic imaging , Data Accuracy , Humans , Magnetic Resonance Imaging/methods , Motion
18.
Neuroimage ; 255: 119215, 2022 07 15.
Article in English | MEDLINE | ID: mdl-35436615

ABSTRACT

As public access to longitudinal developmental datasets like the Adolescent Brain Cognitive Development StudySM (ABCD Study®) increases, so too does the need for resources to benchmark time-dependent effects. Scan-to-scan changes observed with repeated imaging may reflect development but may also reflect practice effects, day-to-day variability in psychological states, and/or measurement noise. Resources that allow disentangling these time-dependent effects will be useful in quantifying actual developmental change. We present an accelerated adult equivalent of the ABCD Study dataset (a-ABCD) using an identical imaging protocol to acquire magnetic resonance imaging (MRI) structural, diffusion-weighted, resting-state and task-based data from eight adults scanned five times over five weeks. We report on the task-based imaging data (n = 7). In-scanner stop-signal (SST), monetary incentive delay (MID), and emotional n-back (EN-back) task behavioral performance did not change across sessions. Post-scan recognition memory for emotional n-back stimuli, however, did improve as participants became more familiar with the stimuli. Functional MRI analyses revealed that patterns of task-based activation reflecting inhibitory control in the SST, reward success in the MID task, and working memory in the EN-back task were more similar within individuals across repeated scan sessions than between individuals. Within-subject, activity was more consistent across sessions during the EN-back task than in the SST and MID task, demonstrating differences in fMRI data reliability as a function of task. The a-ABCD dataset provides a unique testbed for characterizing the reliability of brain function, structure, and behavior across imaging modalities in adulthood and benchmarking neurodevelopmental change observed in the open-access ABCD Study.


Subject(s)
Brain , Neuroimaging , Adolescent , Adult , Brain/physiology , Humans , Magnetic Resonance Imaging/methods , Memory, Short-Term/physiology , Reproducibility of Results
19.
Nature ; 603(7902): 654-660, 2022 03.
Article in English | MEDLINE | ID: mdl-35296861

ABSTRACT

Magnetic resonance imaging (MRI) has transformed our understanding of the human brain through well-replicated mapping of abilities to specific structures (for example, lesion studies) and functions1-3 (for example, task functional MRI (fMRI)). Mental health research and care have yet to realize similar advances from MRI. A primary challenge has been replicating associations between inter-individual differences in brain structure or function and complex cognitive or mental health phenotypes (brain-wide association studies (BWAS)). Such BWAS have typically relied on sample sizes appropriate for classical brain mapping4 (the median neuroimaging study sample size is about 25), but potentially too small for capturing reproducible brain-behavioural phenotype associations5,6. Here we used three of the largest neuroimaging datasets currently available-with a total sample size of around 50,000 individuals-to quantify BWAS effect sizes and reproducibility as a function of sample size. BWAS associations were smaller than previously thought, resulting in statistically underpowered studies, inflated effect sizes and replication failures at typical sample sizes. As sample sizes grew into the thousands, replication rates began to improve and effect size inflation decreased. More robust BWAS effects were detected for functional MRI (versus structural), cognitive tests (versus mental health questionnaires) and multivariate methods (versus univariate). Smaller than expected brain-phenotype associations and variability across population subsamples can explain widespread BWAS replication failures. In contrast to non-BWAS approaches with larger effects (for example, lesions, interventions and within-person), BWAS reproducibility requires samples with thousands of individuals.


Subject(s)
Brain Mapping , Brain , Magnetic Resonance Imaging , Brain Mapping/methods , Cognition , Datasets as Topic , Humans , Magnetic Resonance Imaging/methods , Neuroimaging , Phenotype , Reproducibility of Results
20.
Neuroimage ; 247: 118838, 2022 02 15.
Article in English | MEDLINE | ID: mdl-34942363

ABSTRACT

The importance of motion correction when processing resting state functional magnetic resonance imaging (rs-fMRI) data is well-established in adult cohorts. This includes adjustments based on self-limited, large amplitude subject head motion, as well as factitious rhythmic motion induced by respiration. In adults, such respiration artifact can be effectively removed by applying a notch filter to the motion trace, resulting in higher amounts of data retained after frame censoring (e.g., "scrubbing") and more reliable correlation values. Due to the unique physiological and behavioral characteristics of infants and toddlers, rs-fMRI processing pipelines, including methods to identify and remove colored noise due to subject motion, must be appropriately modified to accurately reflect true neuronal signal. These younger cohorts are characterized by higher respiration rates and lower-amplitude head movements than adults; thus, the presence and significance of comparable respiratory artifact and the subsequent necessity of applying similar techniques remain unknown. Herein, we identify and characterize the consistent presence of respiratory artifact in rs-fMRI data collected during natural sleep in infants and toddlers across two independent cohorts (aged 8-24 months) analyzed using different pipelines. We further demonstrate how removing this artifact using an age-specific notch filter allows for both improved data quality and data retention in measured results. Importantly, this work reveals the critical need to identify and address respiratory-driven head motion in fMRI data acquired in young populations through the use of age-specific motion filters as a mechanism to optimize the accuracy of measured results in this population.


Subject(s)
Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Motion , Neuroimaging/methods , Artifacts , Connectome/methods , Female , Head Movements , Humans , Infant , Male , Respiration , Sleep
SELECTION OF CITATIONS
SEARCH DETAIL
...