Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
1.
Gut ; 2024 May 16.
Article in English | MEDLINE | ID: mdl-38754953

ABSTRACT

OBJECTIVE: Pancreatic ductal adenocarcinoma (PDAC) has limited therapeutic options, particularly with immune checkpoint inhibitors. Highly chemoresistant 'stem-like' cells, known as cancer stem cells (CSCs), are implicated in PDAC aggressiveness. Thus, comprehending how this subset of cells evades the immune system is crucial for advancing novel therapies. DESIGN: We used the KPC mouse model (LSL-KrasG12D/+; LSL-Trp53R172H/+; Pdx-1-Cre) and primary tumour cell lines to investigate putative CSC populations. Transcriptomic analyses were conducted to pinpoint new genes involved in immune evasion. Overexpressing and knockout cell lines were established with lentiviral vectors. Subsequent in vitro coculture assays, in vivo mouse and zebrafish tumorigenesis studies, and in silico database approaches were performed. RESULTS: Using the KPC mouse model, we functionally confirmed a population of cells marked by EpCAM, Sca-1 and CD133 as authentic CSCs and investigated their transcriptional profile. Immune evasion signatures/genes, notably the gene peptidoglycan recognition protein 1 (PGLYRP1), were significantly overexpressed in these CSCs. Modulating PGLYRP1 impacted CSC immune evasion, affecting their resistance to macrophage-mediated and T-cell-mediated killing and their tumourigenesis in immunocompetent mice. Mechanistically, tumour necrosis factor alpha (TNFα)-regulated PGLYRP1 expression interferes with the immune tumour microenvironment (TME) landscape, promoting myeloid cell-derived immunosuppression and activated T-cell death. Importantly, these findings were not only replicated in human models, but clinically, secreted PGLYRP1 levels were significantly elevated in patients with PDAC. CONCLUSIONS: This study establishes PGLYRP1 as a novel CSC-associated marker crucial for immune evasion, particularly against macrophage phagocytosis and T-cell killing, presenting it as a promising target for PDAC immunotherapy.

2.
Fam Cancer ; 2024 May 16.
Article in English | MEDLINE | ID: mdl-38753287

ABSTRACT

The Spanish Familial Pancreatic Cancer Registry (PANGENFAM) was established in 2009 and aims to characterize the genotype and phenotype of familial pancreatic cancer (FPC). Furthermore, an early detection screening program for pancreatic ductal adenocarcinoma (PDAC) is provided to healthy high-risk individuals from FPC and hereditary pancreatic cancer families (first-degree relatives). This article describes our experience over the last 10 years in high-risk screening. Hereditary and familial pancreatic cancer families were identified through the oncology and gastroenterology units. High-risk individuals underwent annual screening with endoscopic ultrasound (EUS) and magnetic resonance (MRI) from age 40 or 10 years younger than the youngest affected family member. Results: PANGENFAM has enrolled 290 individuals from 143 families, including 52 PDAC cases and 238 high-risk individuals. All high-risk individuals eligible for screening were offered to enter the surveillance program, with 143 currently participating. Pancreatic abnormalities were detected in 94 individuals (median age 53 years (29-83), with common findings including cystic lesions and inhomogeneous parenchyma. Imaging test concordance was 66%. Surgical intervention was performed in 4 high-risk individuals following highly suspicious lesions detected by imaging. PANGENFAM is a valuable resource for science innovation, such as biobanking, with clinical and imaging data available for analysis. For high-risk families, it may offer a potential for early diagnosis. Collaboration with other national and international registries is needed to increase our understanding of the disease biology and to standardize criteria for inclusion and follow-up, optimizing cost-effectiveness and efficacy.

3.
Fam Cancer ; 2024 May 23.
Article in English | MEDLINE | ID: mdl-38780705

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is the fourth leading cause of cancer-related death in the Western world. The number of diagnosed cases and the mortality rate are almost equal as the majority of patients present with advanced disease at diagnosis. Between 4 and 10% of pancreatic cancer cases have an apparent hereditary background, known as hereditary pancreatic cancer (HPC) and familial pancreatic cancer (FPC), when the genetic basis is unknown. Surveillance of high-risk individuals (HRI) from these families by imaging aims to detect PDAC at an early stage to improve prognosis. However, the genetic basis is unknown in the majority of HRIs, with only around 10-13% of families carrying known pathogenic germline mutations. The aim of this study was to assess an individual's genetic cancer risk based on sex and personal and family history of cancer. The Best Linear Unbiased Prediction (BLUP) methodology was used to estimate an individual's predicted risk of developing cancer during their lifetime. The model uses different demographic factors in order to estimate heritability. A reliable estimation of heritability for pancreatic cancer of 0.27 on the liability scale, and 0.07 at the observed data scale as obtained, which is different from zero, indicating a polygenic inheritance pattern of PDAC. BLUP was able to correctly discriminate PDAC cases from healthy individuals and those with other cancer types. Thus, providing an additional tool to assess PDAC risk HRI with an assumed genetic predisposition in the absence of known pathogenic germline mutations.

4.
J Natl Compr Canc Netw ; 22(3): 158-166, 2024 04.
Article in English | MEDLINE | ID: mdl-38626807

ABSTRACT

BACKGROUND: Pancreatic adenocarcinoma (PC) is a highly lethal malignancy with a survival rate of only 12%. Surveillance is recommended for high-risk individuals (HRIs), but it is not widely adopted. To address this unmet clinical need and drive early diagnosis research, we established the Pancreatic Cancer Early Detection (PRECEDE) Consortium. METHODS: PRECEDE is a multi-institutional international collaboration that has undertaken an observational prospective cohort study. Individuals (aged 18-90 years) are enrolled into 1 of 7 cohorts based on family history and pathogenic germline variant (PGV) status. From April 1, 2020, to November 21, 2022, a total of 3,402 participants were enrolled in 1 of 7 study cohorts, with 1,759 (51.7%) meeting criteria for the highest-risk cohort (Cohort 1). Cohort 1 HRIs underwent germline testing and pancreas imaging by MRI/MR-cholangiopancreatography or endoscopic ultrasound. RESULTS: A total of 1,400 participants in Cohort 1 (79.6%) had completed baseline imaging and were subclassified into 3 groups based on familial PC (FPC; n=670), a PGV and FPC (PGV+/FPC+; n=115), and a PGV with a pedigree that does not meet FPC criteria (PGV+/FPC-; n=615). One HRI was diagnosed with stage IIB PC on study entry, and 35.1% of HRIs harbored pancreatic cysts. Increasing age (odds ratio, 1.05; P<.001) and FPC group assignment (odds ratio, 1.57; P<.001; relative to PGV+/FPC-) were independent predictors of harboring a pancreatic cyst. CONCLUSIONS: PRECEDE provides infrastructure support to increase access to clinical surveillance for HRIs worldwide, while aiming to drive early PC detection advancements through longitudinal standardized clinical data, imaging, and biospecimen captures. Increased cyst prevalence in HRIs with FPC suggests that FPC may infer distinct biological processes. To enable the development of PC surveillance approaches better tailored to risk category, we recommend adoption of subclassification of HRIs into FPC, PGV+/FPC+, and PGV+/FPC- risk groups by surveillance protocols.


Subject(s)
Adenocarcinoma , Pancreatic Neoplasms , Humans , Pancreatic Neoplasms/diagnostic imaging , Pancreatic Neoplasms/epidemiology , Early Detection of Cancer/methods , Prospective Studies , Genetic Predisposition to Disease , Magnetic Resonance Imaging
5.
Polymers (Basel) ; 15(15)2023 Jul 27.
Article in English | MEDLINE | ID: mdl-37571089

ABSTRACT

3D bioprinting involves using bioinks that combine biological and synthetic materials. The selection of the most appropriate cell-material combination for a specific application is complex, and there is a lack of consensus on the optimal conditions required. Plasma-loaded alginate and alginate/methylcellulose (Alg/MC) inks were chosen to study their viscoelastic behaviour, degree of recovery, gelation kinetics, and cell survival after printing. Selected inks showed a shear thinning behavior from shear rates as low as 0.2 s-1, and the ink composed of 3% w/v SA and 9% w/v MC was the only one showing a successful stacking and 96% recovery capacity. A 0.5 × 106 PANC-1 cell-laden bioink was extruded with an Inkredible 3D printer (Cellink) through a D = 410 µm tip conical nozzle into 6-well culture plates. Cylindrical constructs were printed and crosslinked with CaCl2. Bioinks suffered a 1.845 Pa maximum pressure at the tip that was not deleterious for cellular viability. Cell aggregates can be appreciated for the cut total length observed in confocal microscopy, indicating a good proliferation rate at different heights of the construct, and suggesting the viability of the selected bioink PANC-1/P-Alg3/MC9 for building up three-dimensional bioprinted pancreatic tumor constructs.

6.
Biomed Pharmacother ; 165: 115179, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37481927

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is among the deadliest cancers worldwide, primarily due to its robust desmoplastic stroma and immunosuppressive tumor microenvironment (TME), which facilitate tumor progression and metastasis. In addition, fibrous tissue leads to sparse vasculature, high interstitial fluid pressure, and hypoxia, thereby hindering effective systemic drug delivery and immune cell infiltration. Thus, remodeling the TME to enhance tumor perfusion, increase drug retention, and reverse immunosuppression has become a key therapeutic strategy. In recent years, targeting epigenetic pathways has emerged as a promising approach to overcome tumor immunosuppression and cancer progression. Moreover, the progress in nanotechnology has provided new opportunities for enhancing the efficacy of conventional and epigenetic drugs. Nano-based drug delivery systems (NDDSs) offer several advantages, including improved drug pharmacokinetics, enhanced tumor penetration, and reduced systemic toxicity. Smart NDDSs enable precise targeting of stromal components and augment the effectiveness of immunotherapy through multiple drug delivery options. This review offers an overview of the latest nano-based approaches developed to achieve superior therapeutic efficacy and overcome drug resistance. We specifically focus on the TME and epigenetic-targeted therapies in the context of PDAC, discussing the advantages and limitations of current strategies while highlighting promising new developments. By emphasizing the immense potential of NDDSs in improving therapeutic outcomes in PDAC, our review paves the way for future research in this rapidly evolving field.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Humans , Nanomedicine , Nanoparticle Drug Delivery System , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/pathology , Tumor Microenvironment/genetics , Pancreatic Neoplasms
7.
J Vis Exp ; (195)2023 05 26.
Article in English | MEDLINE | ID: mdl-37306424

ABSTRACT

Tumor organoids are three-dimensional (3D) ex vivo tumor models that recapitulate the biological key features of the original primary tumor tissues. Patient-derived tumor organoids have been used in translational cancer research and can be applied to assess treatment sensitivity and resistance, cell-cell interactions, and tumor cell interactions with the tumor microenvironment. Tumor organoids are complex culture systems that require advanced cell culture techniques and culture media with specific growth factor cocktails and a biological basement membrane that mimics the extracellular environment. The ability to establish primary tumor cultures highly depends on the tissue of origin, the cellularity, and the clinical features of the tumor, such as the tumor grade. Furthermore, tissue sample collection, material quality and quantity, as well as correct biobanking and storage are crucial elements of this procedure. The technical capabilities of the laboratory are also crucial factors to consider. Here, we report a validated SOP/protocol that is technically and economically feasible for the culture of ex vivo tumor organoids from fresh tissue samples of pancreatic adenocarcinoma origin, either from fresh primary resected patient donor tissue or patient-derived xenografts (PDX). The technique described herein can be performed in laboratories with basic tissue culture and mouse facilities and is tailored for wide application in the translational oncology field.


Subject(s)
Adenocarcinoma , Pancreatic Neoplasms , Humans , Animals , Mice , Biological Specimen Banks , Fibroblasts , Organoids , Tumor Microenvironment , Pancreatic Neoplasms
8.
Cancers (Basel) ; 15(10)2023 May 19.
Article in English | MEDLINE | ID: mdl-37345168

ABSTRACT

Gastrointestinal (GI) cancers are malignancies that develop within the digestive system and account for one in four cancer cases according to WHO data [...].

9.
Gut ; 72(2): 345-359, 2023 02.
Article in English | MEDLINE | ID: mdl-35428659

ABSTRACT

OBJECTIVE: The lysyl oxidase-like protein 2 (LOXL2) contributes to tumour progression and metastasis in different tumour entities, but its role in pancreatic ductal adenocarcinoma (PDAC) has not been evaluated in immunocompetent in vivo PDAC models. DESIGN: Towards this end, we used PDAC patient data sets, patient-derived xenograft in vivo and in vitro models, and four conditional genetically-engineered mouse models (GEMMS) to dissect the role of LOXL2 in PDAC. For GEMM-based studies, K-Ras +/LSL-G12D;Trp53 LSL-R172H;Pdx1-Cre mice (KPC) and the K-Ras +/LSL-G12D;Pdx1-Cre mice (KC) were crossed with Loxl2 allele floxed mice (Loxl2Exon2 fl/fl) or conditional Loxl2 overexpressing mice (R26Loxl2 KI/KI) to generate KPCL2KO or KCL2KO and KPCL2KI or KCL2KI mice, which were used to study overall survival; tumour incidence, burden and differentiation; metastases; epithelial to mesenchymal transition (EMT); stemness and extracellular collagen matrix (ECM) organisation. RESULTS: Using these PDAC mouse models, we show that while Loxl2 ablation had little effect on primary tumour development and growth, its loss significantly decreased metastasis and increased overall survival. We attribute this effect to non-cell autonomous factors, primarily ECM remodelling. Loxl2 overexpression, on the other hand, promoted primary and metastatic tumour growth and decreased overall survival, which could be linked to increased EMT and stemness. We also identified tumour-associated macrophage-secreted oncostatin M (OSM) as an inducer of LOXL2 expression, and show that targeting macrophages in vivo affects Osm and Loxl2 expression and collagen fibre alignment. CONCLUSION: Taken together, our findings establish novel pathophysiological roles and functions for LOXL2 in PDAC, which could be potentially exploited to treat metastatic disease.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Humans , Mice , Animals , Epithelial-Mesenchymal Transition/genetics , Pancreatic Neoplasms/pathology , Carcinoma, Pancreatic Ductal/pathology , Disease Models, Animal , Macrophages/metabolism , Amino Acid Oxidoreductases/genetics , Pancreatic Neoplasms
10.
Int J Mol Sci ; 23(24)2022 Dec 07.
Article in English | MEDLINE | ID: mdl-36555088

ABSTRACT

Genetic aberrations, including chromosomal rearrangements, loss or amplification of DNA, and point mutations, are major elements of cancer development [...].


Subject(s)
Epigenesis, Genetic , Neoplasms , Humans , Chromosome Aberrations , Neoplasms/genetics , Neoplasms/therapy , Point Mutation , DNA
11.
Crit Rev Oncol Hematol ; 180: 103865, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36334880

ABSTRACT

Pancreatic neuroendocrine neoplasms (pNENs) are rare cancers with broad challenges for their management. The main clinical obstacles are the high rate of patients diagnosed at advanced stages, lack of prognostic markers for early detection of disease recurrence in resected patients, significant limitations in identifying those who will benefit from adjuvant therapy, and timely recognition of treatment response. Therefore, the discovery of new prognostic and predictive markers is necessary for patient stratification and clinical management. Liquid biopsy, which has revolutionized the field of clinical oncology, is extremely under-investigated in pNENs. This review highlights its potential and the recent advances in related technologies, as candidates for the delivery of the new tools that can help to refine pNEN diagnosis and to personalize treatment. In addition, the opportunities and limitations of available preclinical research models with regard to biomarker research are discussed in light of pNEN clinical needs.


Subject(s)
Neuroendocrine Tumors , Pancreatic Neoplasms , Humans , Neuroendocrine Tumors/diagnosis , Neuroendocrine Tumors/therapy , Neuroendocrine Tumors/pathology , Pancreatic Neoplasms/diagnosis , Pancreatic Neoplasms/therapy , Pancreatic Neoplasms/pathology , Neoplasm Recurrence, Local , Liquid Biopsy , Prognosis
12.
J Vis Exp ; (187)2022 09 16.
Article in English | MEDLINE | ID: mdl-36190291

ABSTRACT

The term liquid biopsy (LB) refers to molecules such as proteins, DNA, RNA, cells, or extracellular vesicles in blood and other bodily fluids that originate from the primary and/or metastatic tumor. LB has emerged as a mainstay in translational research and has started to become part of clinical oncology practice, providing a minimally invasive alternative to solid biopsy. The LB allows real-time monitoring of a tumor via a minimally invasive sample extraction, such as blood. The applications include early cancer detection, patient follow-up for the detection of disease progression, assessment of minimal residual disease, and potential identification of molecular progression and mechanism of resistance. In order to achieve a reliable analysis of these samples that can be reported in the clinic, the preanalytical procedures should be carefully considered and strictly followed. Sample collection, quality, and storage are crucial steps that determine their usefulness in downstream applications. Here, we present standardized protocols from our liquid biopsy working module for collecting, processing, and storing plasma and serum samples for downstream liquid biopsy analysis based on circulating-free DNA. The protocols presented here require standard equipment and are sufficiently flexible to be applied in most laboratories focused on biological procedures.


Subject(s)
Cell-Free Nucleic Acids , Neoplastic Cells, Circulating , Biomarkers, Tumor , Humans , Liquid Biopsy/methods , Neoplasm, Residual , Neoplastic Cells, Circulating/metabolism , RNA
13.
Future Sci OA ; 8(5): FSO796, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35662744

ABSTRACT

Aim: Glioblastoma (GB) is an aggressive tumor type and the detection of circulating endothelial cells (CECs) in peripheral blood has been related to angiogenesis. Materials & methods: A prospective single-center pilot study of CEC detection at diagnosis in 22 patients with GB was performed, using the US FDA-approved CellSearch system. Results: A CEC cutoff value was estimated using a receiver operating curve (ROC) and patients were classified into two groups: <40 CEC/4 ml and >40 CEC/4 ml blood. Median overall survival was 25.33 months for group 1 and 8.23 months for group 2 cases (p = 0.02). There was no correlation between CEC and PWI (perfusion-weighted imaging) RM. Conclusion: CEC detection has a prognostic value in GB cases at diagnosis.

14.
Oncol Rev ; 16(1): 531, 2022 Feb 22.
Article in English | MEDLINE | ID: mdl-35340884

ABSTRACT

Ultrasounds (US) are a non-ionizing mechanical wave, with less adverse effects than conventional pharmacological or surgical treatments. Different biological effects are induced in tissues and cells by ultrasound actuation depending on acoustic parameters, such as the wave intensity, frequency and treatment dose. This non-ionizing radiation has considerable applications in biomedicine including surgery, medical imaging, physical therapy and cancer therapy. Depending on the wave intensity, US are applied as high-intensity ultrasounds (HIUS) and low-intensity pulsed ultrasounds (LIPUS), with different effects on cells and tissues. HIUS produce thermal and mechanical effects, resulting in a large localized temperature increase, leading to tissue ablation and even tumor necrosis. This can be achieved by focusing low intensity waves emitted from different electrically shifted transducers, known as high-intensity focused ultrasounds (HIFU). LIPUS have been used extensively as a therapeutic, surgical and diagnostic tool, with diverse biological effects observed in tissues and cultured cells. US represent a non-invasive treatment strategy that can be applied to selected areas of the body, with limited adverse effects. In fact, tumor ablation using HIFU has been used as a curative treatment in patients with an early-stage pancreatic tumor and is an effective palliative treatment in patients with advanced stage disease. However, the biological effects, dose standardization, benefit-risk ratio and safety are not fully understood. Thus, it is an emerging field that requires further research in order to reach its full potential.

15.
Int J Mol Sci ; 23(4)2022 Feb 14.
Article in English | MEDLINE | ID: mdl-35216235

ABSTRACT

Due to abundant stroma and extracellular matrix, accompanied by lack of vascularization, pancreatic ductal adenocarcinoma (PDAC) is characterized by severe hypoxia. Epigenetic regulation is likely one of the mechanisms driving hypoxia-induced epithelial-to-mesenchymal transition (EMT), responsible for PDAC aggressiveness and dismal prognosis. To verify the role of DNA methylation in this process, we assessed gene expression and DNA methylation changes in four PDAC cell lines. BxPC-3, MIA PaCa-2, PANC-1, and SU.86.86 cells were exposed to conditioned media containing cytokines and inflammatory molecules in normoxic and hypoxic (1% O2) conditions for 2 and 6 days. Cancer Inflammation and Immunity Crosstalk and Human Epithelial to Mesenchymal Transition RT² Profiler PCR Arrays were used to identify top deregulated inflammatory and EMT-related genes. Their mRNA expression and DNA methylation were quantified by qRT-PCR and pyrosequencing. BxPC-3 and SU.86.86 cell lines were the most sensitive to hypoxia and inflammation. Although the methylation of gene promoters correlated with gene expression negatively, it was not significantly influenced by experimental conditions. However, DNA methyltransferase inhibitor decitabine efficiently decreased DNA methylation up to 53% and reactivated all silenced genes. These results confirm the role of DNA methylation in EMT-related gene regulation and uncover possible new targets involved in PDAC progression.


Subject(s)
Carcinoma, Pancreatic Ductal/genetics , DNA Methylation/genetics , Epithelial-Mesenchymal Transition/genetics , Gene Expression Regulation, Neoplastic/genetics , Gene Expression/genetics , Pancreatic Neoplasms/genetics , Biomarkers, Tumor/genetics , Carcinoma, Pancreatic Ductal/pathology , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Epigenesis, Genetic/genetics , Humans , Pancreatic Neoplasms/pathology , Prognosis , Pancreatic Neoplasms
16.
Clin Transl Gastroenterol ; 13(3): e00468, 2022 02 14.
Article in English | MEDLINE | ID: mdl-35166713

ABSTRACT

INTRODUCTION: The IMMray PanCan-d test combines an 8-plex biomarker signature with CA19-9 in a proprietary algorithm to detect pancreatic ductal adenocarcinoma (PDAC) in serum samples. This study aimed to validate the clinical performance of the IMMray PanCan-d test and to better understand test performance in Lewis-null (le/le) individuals who cannot express CA19-9. METHODS: Serum samples from 586 individuals were analyzed with the IMMray PanCan-d biomarker signature and CA19-9 assay, including 167 PDAC samples, 203 individuals at high risk of familial/hereditary PDAC, and 216 healthy controls. Samples were collected at 11 sites in the United States and Europe. The study was performed by Immunovia, Inc (Marlborough, MA), and sample identity was blinded throughout the study. Test results were automatically generated using validated custom software with a locked algorithm and predefined decision value cutoffs for sample classification. RESULTS: The IMMray PanCan-d test distinguished PDAC stages I and II (n = 56) vs high-risk individuals with 98% specificity and 85% sensitivity and distinguished PDAC stages I-IV vs high-risk individuals with 98% specificity and 87% sensitivity. We identified samples with a CA19-9 value of 2.5 U/mL or less as probable Lewis-null (le/le) individuals. Excluding these 55 samples from the analysis increased the IMMray PanCan-d test sensitivity to 92% for PDAC stages I-IV (n = 157) vs controls (n = 379) while maintaining specificity at 99%; test sensitivity for PDAC stages I and II increased from 85% to 89%. DISCUSSION: These results demonstrate the IMMray PanCan-d blood test can detect PDAC with high specificity (99%) and sensitivity (92%).


Subject(s)
Adenocarcinoma , Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Adenocarcinoma/diagnosis , Biomarkers, Tumor , CA-19-9 Antigen , Carcinoma, Pancreatic Ductal/diagnosis , Carcinoma, Pancreatic Ductal/genetics , Humans , Pancreatic Neoplasms/pathology
17.
EBioMedicine ; 75: 103797, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34973624

ABSTRACT

BACKGROUND: Early diagnosis is crucial for patients with pancreatic ductal adenocarcinoma (PDAC). The AXL receptor tyrosine kinase is proteolytically processed releasing a soluble form (sAXL) into the blood stream. Here we explore the use of sAXL as a biomarker for PDAC. METHODS: AXL was analysed by immunohistochemistry in human pancreatic tissue samples. RNA expression analysis was performed using TCGA/GTEx databases. The plasma concentrations of sAXL, its ligand GAS6, and CA19-9 were studied in two independent cohorts, the HMar cohort (n = 59) and the HClinic cohort (n = 142), including healthy controls, chronic pancreatitis (CP) or PDAC patients, and in a familial PDAC cohort (n = 68). AXL expression and sAXL release were studied in PDAC cell lines and murine models. FINDINGS: AXL is increased in PDAC and precursor lesions as compared to CP or controls. sAXL determined in plasma from two independent cohorts was significantly increased in the PDAC group as compared to healthy controls or CP patients. Patients with high levels of AXL have a lower overall survival. ROC analysis of the plasma levels of sAXL, GAS6, or CA19-9 in our cohorts revealed that sAXL outperformed CA19-9 for discriminating between CP and PDAC. Using both sAXL and CA19-9 increased the diagnostic value. These results were validated in murine models, showing increased sAXL specifically in animals developing PDAC but not those with precursor lesions or acinar tumours. INTERPRETATION: sAXL appears as a biomarker for early detection of PDAC and PDAC-CP discrimination that could accelerate treatment and improve its dismal prognosis. FUNDING: This work was supported by grants PI20/00625 (PN), RTI2018-095672-B-I00 (AM and PGF), PI20/01696 (MG) and PI18/01034 (AC) from MICINN-FEDER and grant 2017/SGR/225 (PN) from Generalitat de Catalunya.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Pancreatitis, Chronic , Animals , Biomarkers, Tumor , CA-19-9 Antigen , Carcinoma, Pancreatic Ductal/diagnosis , Diagnosis, Differential , Early Diagnosis , Humans , Intercellular Signaling Peptides and Proteins , Mice , Pancreatic Neoplasms/diagnosis , Pancreatitis, Chronic/diagnosis
18.
Gastroenterology ; 162(3): 772-785.e4, 2022 03.
Article in English | MEDLINE | ID: mdl-34678218

ABSTRACT

BACKGROUND & AIMS: To successfully implement imaging-based pancreatic cancer (PC) surveillance, understanding the timeline and morphologic features of neoplastic progression is key. We aimed to investigate the progression to neoplasia from serial prediagnostic pancreatic imaging tests in high-risk individuals and identify factors associated with successful early detection. METHODS: We retrospectively examined the development of pancreatic abnormalities in high-risk individuals who were diagnosed with PC or underwent pancreatic surgery, or both, in 16 international surveillance programs. RESULTS: Of 2552 high-risk individuals under surveillance, 28 (1%) developed neoplastic progression to PC or high-grade dysplasia during a median follow-up of 29 months after baseline (interquartile range [IQR], 40 months). Of these, 13 of 28 (46%) presented with a new lesion (median size, 15 mm; range 7-57 mm), a median of 11 months (IQR, 8; range 3-17 months) after a prior examination, by which time 10 of 13 (77%) had progressed beyond the pancreas. The remaining 15 of 28 (54%) had neoplastic progression in a previously detected lesion (12 originally cystic, 2 indeterminate, 1 solid), and 11 (73%) had PC progressed beyond the pancreas. The 12 patients with cysts had been monitored for 21 months (IQR, 15 months) and had a median growth of 5 mm/y (IQR, 8 mm/y). Successful early detection (as high-grade dysplasia or PC confined to the pancreas) was associated with resection of cystic lesions (vs solid or indeterminate lesions (odds ratio, 5.388; 95% confidence interval, 1.525-19.029) and small lesions (odds ratio, 0.890/mm; 95% confidence interval 0.812-0.976/mm). CONCLUSIONS: In nearly half of high-risk individuals developing high-grade dysplasia or PC, no prior lesions are detected by imaging, yet they present at an advanced stage. Progression can occur before the next scheduled annual examination. More sensitive diagnostic tools or a different management strategy for rapidly growing cysts are needed.


Subject(s)
Early Detection of Cancer , Pancreatic Neoplasms/diagnostic imaging , Pancreatic Neoplasms/pathology , Precancerous Conditions/diagnostic imaging , Precancerous Conditions/pathology , Watchful Waiting , Adult , Aged , Aged, 80 and over , Disease Progression , Endosonography , Female , Follow-Up Studies , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Neoplasm Metastasis , Pancreas/pathology , Pancreatic Cyst/diagnostic imaging , Pancreatic Cyst/pathology , Pancreatic Neoplasms/surgery , Retrospective Studies , Risk Factors , Time Factors , Tomography, X-Ray Computed , Tumor Burden
19.
Front Cell Dev Biol ; 10: 842965, 2022.
Article in English | MEDLINE | ID: mdl-36712968

ABSTRACT

In recent years, it has been verified that collective cell migration is a fundamental step in tumor spreading and metastatic processes. In this paper, we demonstrate for the first time how low-intensity ultrasound produces long-term inhibition of collective migration of epithelial cancer cells in wound healing processes. In particular, we show how pancreatic tumor cells, PANC-1, grown as monolayers in vitro respond to these waves at frequencies close to 1 MHz and low intensities (<100 mW cm-2) for 48-72 h of culture after some minutes of a single ultrasound irradiation. This new strategy opens a new line of action to block the spread of malignant cells in cancer processes. Despite relevant spatial variations of the acoustic pressure amplitude induced in the assay, the cells behave as a whole, showing a collective dynamic response to acoustic performance. Experiments carried out with samples without previous starving showed remarkable effects of the LICUs from the first hours of culture, more prominent than those with experiments with monolayers subjected to fasting prior to the experiments. This new strategy to control cell migration demonstrating the effectiveness of LICUS on not starved cells opens a new line of action to study effects of in vivo ultrasonic actuation on tumor tissues with malignant cells. This is a proof-of-concept study to demonstrate the physical effects of ultrasound stimulation on tumor cell migration. An in-depth biological study of the effects of ultrasounds and underlying biological mechanisms is on-going but out of the scope of this article.

SELECTION OF CITATIONS
SEARCH DETAIL
...