Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 10(10): eadl1226, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38446891

ABSTRACT

The Mendocino triple junction-the intersection of the Pacific, North American, and Gorda plates-activates a collection of disparate faults that reconcile Cascadia subduction with San Andreas transform motion. The 20 December 2022 Mw 6.4 Ferndale, California, earthquake occurred within this complex zone as strike-slip faulting within the subducting Gorda slab. Here, we analyze the seismic and geodetic signatures of the mainshock and aftershock sequence to illuminate its role within complex tectonic surroundings. We find aftershocks on varied fault structures within the uppermost Gorda slab, yet seismicity on the subduction interface itself was notably absent. Nevertheless, we identify small but coherent postseismic deformation that is well modeled by aseismic slip on this interface, likely triggered by stresses generated at the updip limit of coseismic rupture. This sequence demonstrates the potential for interactions between intra-slab earthquakes and slip on the subduction megathrust, highlighting the need to consider this and other subduction zones as coupled systems of interacting faults.

2.
Nature ; 512(7514): 295-8, 2014 Aug 21.
Article in English | MEDLINE | ID: mdl-25119028

ABSTRACT

The seismic gap theory identifies regions of elevated hazard based on a lack of recent seismicity in comparison with other portions of a fault. It has successfully explained past earthquakes (see, for example, ref. 2) and is useful for qualitatively describing where large earthquakes might occur. A large earthquake had been expected in the subduction zone adjacent to northern Chile, which had not ruptured in a megathrust earthquake since a M âˆ¼8.8 event in 1877. On 1 April 2014 a M 8.2 earthquake occurred within this seismic gap. Here we present an assessment of the seismotectonics of the March-April 2014 Iquique sequence, including analyses of earthquake relocations, moment tensors, finite fault models, moment deficit calculations and cumulative Coulomb stress transfer. This ensemble of information allows us to place the sequence within the context of regional seismicity and to identify areas of remaining and/or elevated hazard. Our results constrain the size and spatial extent of rupture, and indicate that this was not the earthquake that had been anticipated. Significant sections of the northern Chile subduction zone have not ruptured in almost 150 years, so it is likely that future megathrust earthquakes will occur to the south and potentially to the north of the 2014 Iquique sequence.

SELECTION OF CITATIONS
SEARCH DETAIL
...