Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Extra Corpor Technol ; 45(1): 26-32, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23691781

ABSTRACT

Many patient factors have been associated with mortality from extracorporeal membrane oxygenation (ECMO) therapy. Pre-ECMO patient pH and arterial carbon dioxide (paCO2) have been associated with poor outcome and can be significantly altered by ECMO initiation. We hypothesized that the magnitude of change in paCO2 and pH with ECMO initiation could be associated with survival. We designed a retrospective observational study from a single tertiary care center and included all pediatric patients (age younger than 18 years) undergoing ECMO between 2002 and 2010. Electronic records were queried for demographics and clinical characteristics, including the arterial blood gas (ABG) pre- and post-ECMO initiation. Bivariate analysis compared ECMO course characteristics by outcome (survivor vs. nonsurvivor). Multivariable logistic regression was performed on factors associated with the outcome in the bivariate analysis at the significance level of p < .1. Odds ratios (ORs) and 95% confidence intervals (95% CIs) were reported. We identified 201 patients with a median age of 10 days (range, 1 day to 16 years). Indications for ECMO were: respiratory failure (51%), cardiac failure (23%), extracorporeal cardiopulmonary resuscitation (21%), and sepsis (5%). Mortality, defined by death before discharge, was 37% (74 of 201). ABG data pre- and post-ECMO initiations were available in 84% (169 of 201). Age, pH, paCO2, indication, and intracranial hemorrhage were significantly associated with mortality (p < .05). After adjusting for potential confounders (age, use of epinephrine, volume of fluid administered, year of ECMO, ECMO indication, and duration of ECMO) by multivariable logistic regression, the magnitude of paCO2 change (> or =25 mmHg) was associated with mortality (adjusted OR, 2.21; 95% CI, 1.06-4.63; p = .036). The decrease in paCO2 with ECMO initiation was associated with mortality. Although this change in paCO2 is multifactorial, it represents a modifiable element of clinical management involving pre-ECMO ventilation, ECMO circuit priming, CO2 administration/removal, and may represent a future therapeutic target that could improve survival in pediatric ECMO.


Subject(s)
Carbon Dioxide/blood , Extracorporeal Membrane Oxygenation/methods , Adolescent , Child , Child, Preschool , Extracorporeal Membrane Oxygenation/statistics & numerical data , Humans , Infant , Infant, Newborn , Partial Pressure , Retrospective Studies , Treatment Outcome
2.
Pediatr Pulmonol ; 45(9): 847-59, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20583220

ABSTRACT

SUMMARY: Ataxia-telangiectasia (A-T) is a rare autosomal recessive disorder caused by mutations in the ATM gene, resulting in faulty repair of breakages in double-stranded DNA. The clinical phenotype is complex and is characterized by neurologic abnormalities, immunodeficiencies, susceptibility to malignancies, recurrent sinopulmonary infections, and cutaneous abnormalities. Lung disease is common in patients with A-T and often progresses with age and neurological decline. Diseases of the respiratory system cause significant morbidity and are a frequent cause of death in the A-T population. Lung disease in this population is thought to exhibit features of one or more of the following phenotypes: recurrent sinopulmonary infections with bronchiectasis, interstitial lung disease, and lung disease associated with neurological abnormalities. Here, we review available evidence and present expert opinion on the diagnosis, evaluation, and management of lung disease in A-T, as discussed in a recent multidisciplinary workshop. Although more data are emerging on this unique population, many recommendations are made based on similarities to other more well-studied diseases. Gaps in current knowledge and areas for future research in the field of pulmonary disease in A-T are also outlined.


Subject(s)
Ataxia Telangiectasia/physiopathology , Bronchiectasis/physiopathology , Lung Diseases, Interstitial/physiopathology , Ataxia Telangiectasia/complications , Bronchiectasis/etiology , Deglutition Disorders , Humans , Lung Diseases, Interstitial/etiology , Respiratory Function Tests
3.
Anesth Analg ; 110(2): 321-8, 2010 Feb 01.
Article in English | MEDLINE | ID: mdl-20008083

ABSTRACT

BACKGROUND: Patient rewarming after hypothermic cardiopulmonary bypass (CPB) has been linked to brain injury after cardiac surgery. In this study, we evaluated whether cooling and then rewarming of body temperature during CPB in adult patients is associated with alterations in cerebral blood flow (CBF)-blood pressure autoregulation. METHODS: One hundred twenty-seven adult patients undergoing CPB during cardiac surgery had transcranial Doppler monitoring of the right and left middle cerebral artery blood flow velocity. Eleven patients undergoing CPB who had arterial inflow maintained at >35 degrees C served as controls. The mean velocity index (Mx) was calculated as a moving, linear correlation coefficient between slow waves of middle cerebral artery blood flow velocity and mean arterial blood pressure. Intact CBF-blood pressure autoregulation is associated with an Mx that approaches 0. Impaired autoregulation results in an increasing Mx approaching 1.0. Comparisons of time-averaged Mx values were made between the following periods: before CPB (baseline), during the cooling and rewarming phases of CPB, and after CPB. The number of patients in each phase of CPB with an Mx >4.0, indicative of impaired CBF autoregulation, was determined. RESULTS: During cooling, Mx (left, 0.29 +/- 0.18; right, 0.28 +/- 0.18 [mean +/- SD]) was greater than that at baseline (left, 0.17 +/- 0.21; right, 0.17 +/- 0.20; P or=0.4 during the cooling phase of CPB and 68 (53%) had an average Mx >or=0.4 during rewarming. Nine of the 11 warm controls had an average Mx >or=0.4 during the entire CPB period. There were 7 strokes and 1 TIA after surgery. All strokes were in patients with Mx >or= 0.4 during rewarming (P = 0.015). The unadjusted odds ratio for any neurologic event (stroke or transient ischemic attack) for patients with Mx >or= 0.4 during rewarming was 6.57 (95% confidence interval, 0.79 to 55.0, P < 0.08). CONCLUSIONS: Hypothermic CPB is associated with abnormal CBF-blood pressure autoregulation that is worsened with rewarming. We found a high rate of strokes in patients with evidence of impaired CBF autoregulation. Whether a pressure-passive CBF state during rewarming is associated with risk for ischemic brain injury requires further investigation.


Subject(s)
Cardiopulmonary Bypass , Cerebrovascular Circulation , Homeostasis , Hypothermia, Induced , Rewarming , Stroke/etiology , Adult , Aged , Blood Flow Velocity , Blood Pressure , Body Temperature , Female , Humans , Male , Rewarming/adverse effects , Stroke/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL
...