Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
Add more filters










Publication year range
1.
Anal Chem ; 95(49): 18122-18129, 2023 12 12.
Article in English | MEDLINE | ID: mdl-38032341

ABSTRACT

The recent surge of effort in nucleic-acid-based electrochemical (EC) sensors has been fruitful, yet there remains a need for more generalizable EC platforms for sensing multiple classes of clinically relevant targets. We recently reported a nucleic acid nanostructure for simple, economical, and more generalizable EC readout of a range of analytes, including small molecules, peptides, proteins, and antibodies. The nanostructure is built through on-electrode enzymatic ligation of three oligonucleotides for attachment, binding, and signaling. However, the generalizable detection of larger proteins remains a challenge. Here, we adapted the sensor to quantify larger proteins in a more generic manner through conjugating the protein's minimized antibody-binding epitope to the central DNA strand. This concept was verified using creatine kinase (CK-MM), a biomarker of muscle damage and several disorders for which rapid clinical sensing is important. DNA-epitope conjugates permitted a competitive immunoassay for the CK protein at the electrode via square-wave voltammetry (SWV). Sensing through a signal-off mechanism, the anti-CK antibody limit of detection (LOD) was 5 nM with a response time as low as 3 min. Antibody displacement by native protein analytes gave a signal-on response with the CK sensing range from the LOD of 14 nM up to 100 nM, overlapping with the normal (nonelevated) human clinical range (3-37 nM), and the sensor was validated in 98% human serum. While a need for improved DNA-epitope conjugate purification was identified, overall, this approach allows the quantification of a generic protein- or peptide-binding antibody and should facilitate future quantitative EC readouts of clinically relevant proteins that were previously inaccessible to EC techniques.


Subject(s)
Biosensing Techniques , Nanostructures , Nucleic Acids , Humans , Epitopes , DNA/chemistry , Proteins , Antibodies , Nanostructures/chemistry , Electrochemical Techniques/methods , Biosensing Techniques/methods , Limit of Detection
2.
Analyst ; 148(19): 4810-4819, 2023 Sep 25.
Article in English | MEDLINE | ID: mdl-37605899

ABSTRACT

The development of microfluidic systems for biological assays presents challenges, particularly in adapting traditional optical absorbance assays to smaller volumes or to microfluidic formats. This often requires assay modification or translation to a fluorescence version, which can be impractical. To address this issue, our group has developed the µChopper device, which uses microfluidic droplet formation as a surrogate for an optical beam chopper, allowing for lock-in analysis and improved limits of detection with both absorbance and fluorescence optics without modifying the optical path length. Here, we have adapted the µChopper to low-cost optics using a light-emitting diode (LED) source and photodiode detector, and we have fabricated the pnuematically valved devices entirely by 3D printing instead of traditional photolithography. Using a hybrid device structure, fluidic channels were made in polydimethylsiloxane (PDMS) by moulding onto a 3D-printed master then bonding to a prefabricated thin layer, and the pneumatic layer was directly made of 3D-printed resin. This hybrid structure allowed an optical slit to be fabricated directly under fluidic channels, with the LED interfaced closely above the channel. Vacuum-operated, normally closed valves provided precise temporal control of droplet formation from 0.6 to 2.0 Hz. The system was validated against the standard plate reader format using a colorimetric fructosamine assay and by quantifying fructosamine in human serum from normal and diabetic patients, where strong correlation was shown. Showing a standard benefit of microfluidics in analysis, the device required 6.4-fold less serum volume for each assay. This µChopper device and lower cost optical system should be applicable to various absorbance based assays in low volumes, and the reliance on inexpensive 3D printers makes it more accessible to users without cleanroom facilities.


Subject(s)
Microfluidic Analytical Techniques , Humans , Fructosamine , Microfluidics , Printing, Three-Dimensional , Software
3.
Anal Chem ; 95(31): 11680-11686, 2023 08 08.
Article in English | MEDLINE | ID: mdl-37490525

ABSTRACT

Antibodies have long been recognized as clinically relevant biomarkers of disease. The onset of a disease often stimulates antibody production in low quantities, making it crucial to develop sensitive, specific, and easy-to-use antibody assay platforms. Antibodies are also extensively used as probes in bioassays, and there is a need for simpler methods to evaluate specialized probes, such as antibody-oligonucleotide (AbO) conjugates. Previously, we demonstrated that thermofluorimetric analysis (TFA) of analyte-driven DNA assembly can be leveraged to detect protein biomarkers using AbO probes. A key advantage of this technique is its ability to circumvent autofluorescence arising from biological samples, which otherwise hampers homogeneous assays. The analysis of differential DNA melt curves (dF/dT) successfully distinguishes the signal from the background and interferences. Expanding the applicability of TFA further, herein we demonstrate a unique proximity based TFA assay for antibody quantification that is functional in 90% human plasma. We show that the conformational flexibility of the DNA-based proximity probes is critically important for optimal performance in these assays. To promote stable, proximity-induced hybridization of the short DNA strands, substitution of poly(ethylene glycol) (PEG) spacers in place of ssDNA segments led to improved conformational flexibility and sensor performance. Finally, by applying these flexible spacers to study AbO conjugates directly, we validate this modified TFA approach as a novel tool to elucidate the probe valency, clearly distinguishing between monovalent and multivalent AbOs and reducing the reagent amounts by 12-fold.


Subject(s)
Immunoconjugates , Oligonucleotides , Humans , Antibodies , DNA/analysis , Proteins , DNA Probes
4.
ACS Appl Mater Interfaces ; 15(4): 5019-5027, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36661270

ABSTRACT

A variety of electrochemical (EC) biosensors play critical roles in disease diagnostics. More recently, DNA-based EC sensors have been established as promising for detecting a wide range of analyte classes. Since most of these sensors rely on the high specificity of DNA hybridization for analyte binding or structural control, it is crucial to understand the kinetics of hybridization at the electrode surface. In this work, we have used methylene blue-labeled DNA strands to monitor the kinetics of DNA hybridization at the electrode surface with square-wave voltammetry. By varying the position of the double-stranded DNA segment relative to the electrode surface as well as the bulk solution's ionic strength (0.125-1.00 M), we observed significant interferences with DNA hybridization closer to the surface, with more substantial interference at lower ionic strength. As a demonstration of the effect, toehold-mediated strand displacement reactions were slowed and diminished close to the surface, while strategic placement of the DNA binding site improved reaction rates and yields. This work manifests that both the salt concentration and DNA hybridization site relative to the electrode are important factors to consider when designing DNA-based EC sensors that measure hybridization directly at the electrode surface.


Subject(s)
Biosensing Techniques , Gold , Gold/chemistry , Kinetics , DNA/chemistry , Nucleic Acid Hybridization , Electrodes
5.
ACS Sens ; 7(3): 784-789, 2022 03 25.
Article in English | MEDLINE | ID: mdl-35180342

ABSTRACT

Although endogenous peptides and peptide-based therapeutics are both highly relevant to human health, there are few approaches for sensitive biosensing of this class of molecules with minimized workflow. In this work, we have further expanded on the generalizability of our recently developed DNA nanostructure architecture by applying it to electrochemical (EC) peptide quantification. While DNA-small molecule conjugates were used in a prior work to make sensors for small molecule and protein analytes, here DNA-peptide conjugates were incorporated into the nanostructure at the electrode surfaces, and antibody displacement permitted rapid peptide sensing. Interestingly, multivalent DNA-peptide conjugates were found to be detrimental to the assay readout, yet these effects could be minimized by solution-phase bioconjugation. The final biosensor was validated for quantifying exendin-4 (4.2 kDa)─a human glucagon-like peptide-1 receptor agonist important in diabetes therapy─for the first time using EC methods with minimal workflow. The sensor was functional in 98% human serum, and the low nanomolar assay range lies between the injected dose concentration and the therapeutic range, boding well for future applications in therapeutic drug monitoring.


Subject(s)
Nanostructures , Nucleic Acids , DNA/chemistry , Exenatide , Humans , Peptides
6.
Annu Rev Anal Chem (Palo Alto Calif) ; 14(1): 133-153, 2021 07 27.
Article in English | MEDLINE | ID: mdl-33979546

ABSTRACT

Droplet-based microfluidics has emerged as an important subfield within the microfluidic and general analytical communities. Indeed, several unique applications such as digital assay readout and single-cell sequencing now have commercial systems based on droplet microfluidics. Yet there remains room for this research area to grow. To date, most analytical readouts are optical in nature, relatively few studies have integrated sample preparation, and passive means for droplet formation and manipulation have dominated the field. Analytical scientists continue to expand capabilities by developing droplet-compatible method adaptations, for example, by interfacing to mass spectrometers or automating droplet sampling for temporally resolved analysis. In this review, we highlight recently developed fluidic control techniques and unique integrations of analytical methodology with droplet microfluidics-focusing on automation and the connections to analog/digital domains-and we conclude by offering a perspective on current challenges and future applications.


Subject(s)
Microfluidic Analytical Techniques , Microfluidics , Biological Assay , Mass Spectrometry
8.
Micromachines (Basel) ; 11(6)2020 Jun 25.
Article in English | MEDLINE | ID: mdl-32630555

ABSTRACT

While droplet-based microfluidics is a powerful technique with transformative applications, most devices are passively operated and thus have limited real-time control over droplet contents. In this report, an automated droplet-based microfluidic device with pneumatic pumps and salt water electrodes was developed to generate and coalesce up to six aqueous-in-oil droplets (2.77 nL each). Custom control software combined six droplets drawn from any of four inlet reservoirs. Using our µChopper method for lock-in fluorescence detection, we first accomplished continuous linear calibration and quantified an unknown sample. Analyte-independent signal drifts and even an abrupt decrease in excitation light intensity were corrected in real-time. The system was then validated with homogeneous insulin immunoassays that showed a nonlinear response. On-chip droplet merging with antibody-oligonucleotide (Ab-oligo) probes, insulin standards, and buffer permitted the real-time calibration and correction of large signal drifts. Full calibrations (LODconc = 2 ng mL-1 = 300 pM; LODamt = 5 amol) required <1 min with merely 13.85 nL of Ab-oligo reagents, giving cost-savings 160-fold over the standard well-plate format while also automating the workflow. This proof-of-concept device-effectively a microfluidic digital-to-analog converter-is readily scalable to more droplets, and it is well-suited for the real-time automation of bioassays that call for expensive reagents.

9.
Lab Chip ; 20(8): 1503-1512, 2020 04 21.
Article in English | MEDLINE | ID: mdl-32239045

ABSTRACT

Our understanding of adipose tissue biology has steadily evolved. While structural and energy storage functionalities have been in the forefront, a key endocrine role for adipocytes was revealed only over the last few decades. In contrast to the wealth of information on dynamic function of other endocrine tissues, few studies have focused on dynamic adipose tissue function or on tool development toward that end. Here, we apply our unique droplet-based microfluidic devices to culture, perfuse, and sample secretions from primary murine epididymal white adipose tissue (eWAT), and from predifferentiated clusters of 3T3-L1 adipocytes. Through automated control, oil-segmented aqueous droplets (∼2.6 nL) were sampled from tissue or cells at 3.5 second temporal resolution (including sample and reference droplets), with integrated enzyme assays enabling real-time quantification of glycerol (down to 1.9 fmol per droplet). This high resolution revealed previously unreported oscillations in secreted glycerol at frequencies of 0.2 to 2.0 min-1 (∼30-300 s periods) present in the primary tissue but not in clustered cells. Low-level bursts (∼50 fmol) released in basal conditions were contrasted with larger bursts (∼300 fmol) during stimulation. Further, both fold changes and burst magnitudes were decreased in eWAT of aged and obese mice. These results, combined with immunostaining and photobleaching analyses, suggest that gap-junctional coupling or nerve cell innervation within the intact ex vivo tissue explants play important roles in this apparent tissue-level, lipolytic synchronization. High-resolution, quantitative sampling by droplet microfluidics thus permitted unique biological information to be observed, giving an analytical framework poised for future studies of dynamic oscillatory function of adipose and other tissues.


Subject(s)
Adipose Tissue , Microfluidics , 3T3-L1 Cells , Adipocytes , Adipose Tissue, White , Animals , Mice
10.
Anal Chem ; 91(24): 15833-15839, 2019 12 17.
Article in English | MEDLINE | ID: mdl-31718147

ABSTRACT

One of the key factors limiting sensitivity in many electrochemical assays is the nonfaradaic or capacitive current. This is particularly true in modern assay systems based on DNA monolayers at gold electrode surfaces, which have shown great promise for bioanalysis in complex milieu such as whole blood or serum. While various changes in analytical parameters, redox reporter molecules, DNA structures, probe coverage, and electrode surface area have been shown useful, background reduction by hardware subtraction has not yet been explored for these assays. Here, we introduce new electrochemistry hardware that considerably suppresses nonfaradaic currents through real-time analog subtraction during current-to-voltage conversion in the potentiostat. This differential potentiostat (DiffStat) configuration is shown to suppress or remove capacitance currents in chronoamperometry, cyclic voltammetry, and square-wave voltammetry measurements applied to nucleic acid hybridization assays at the electrode surface. The DiffStat makes larger electrodes and higher sensitivity settings accessible to the user, providing order-of-magnitude improvements in sensitivity, and it also significantly simplifies data processing to extract faradaic currents in square-wave voltammetry (SWV). Because two working electrodes are used for differential measurements, unique arrangements are introduced such as converting signal-OFF assays to signal-ON assays or background drift correction in 50% human serum. Overall, this new potentiostat design should be helpful not only in improving the sensitivity of most electrochemical assays, but it should also better support adaptation of assays to the point-of-care by circumventing complex data processing.


Subject(s)
DNA/chemistry , Electrochemical Techniques/methods , Electric Capacitance , Electrodes , Gold/chemistry , Humans , Methylene Blue/analysis , Methylene Blue/chemistry
11.
J Am Chem Soc ; 141(29): 11721-11726, 2019 07 24.
Article in English | MEDLINE | ID: mdl-31257869

ABSTRACT

For an assay to be most effective in point-of-care clinical analysis, it needs to be economical, simple, generalizable, and free from tedious workflows. While electrochemistry-based DNA sensors reduce instrumental costs and eliminate complicated procedures, there remains a need to address probe costs and generalizability, as numerous probes with multiple conjugations are needed to quantify a wide range of biomarkers. In this work, we have opened a route to circumvent complicated multiconjugation schemes using enzyme-catalyzed probe construction directly on the surface of the electrode. With this, we have created a versatile DNA nanostructure probe and validated its effectiveness by quantification of proteins (streptavidin, anti-digoxigenin, anti-tacrolimus) and small molecules (biotin, digoxigenin, tacrolimus) using the same platform. Tacrolimus, a widely prescribed immunosuppressant drug for organ transplant patients, was directly quantified with electrochemistry for the first time, with the assay range matching the therapeutic index range. Finally, the stability and sensitivity of the probe was confirmed in a background of minimally diluted human serum.


Subject(s)
DNA/chemistry , Electrochemical Techniques/methods , Electrodes , Nanostructures/chemistry , Proteins/analysis , Antibodies/analysis , Antibodies/blood , Biotin/analysis , Calibration , Digoxigenin/analysis , Electrochemical Techniques/instrumentation , Humans , Immobilized Nucleic Acids/chemistry , Limit of Detection , Reproducibility of Results , Streptavidin/analysis , Tacrolimus/blood , Tacrolimus/immunology
12.
Anal Methods ; 10(28): 3436-3443, 2018 Jul 28.
Article in English | MEDLINE | ID: mdl-30505354

ABSTRACT

In this work, we expand upon our recently developed droplet-based sample chopping concepts by introducing a multiplexed fluidic micro-chopper device (µChopper). Six aqueous input channels were integrated with a single oil input, and each of these seven channels was controlled by a pneumatic valve for automated sampling through software control. This improved design, while maintaining high precision in valve-based droplet generation at bandwidths of 0.03 to 0.05 Hz, enabled a variety of analytical modes to be employed on-chip compared to previous devices limited to sample/reference alternations. The device was analytically validated for real-time, continuous calibration with a single sample and five standards; multiplexed analysis during calibration using a mixed mode; and standard addition through spiking of six sample droplets with varying amounts of standard. Finally, the standard addition mode was applied to protein quantification in human serum samples using on-chip, homogeneous fluorescence immunoassays. Ultimately, with only ~1.2 µL of total analyzed solution volume- representing 100-fold and 75-fold reductions in reagent and serum volumes, respectively-we were able to generate full, six-point standard addition curves in only 1.5 min, and results correlated well with those from standard plate-reader equipment. This work thus exploited microfluidic valves for both their automation and droplet phase-locking capabilities, resulting in a micro-analytical tool capable of complex analytical interrogation modes on sub-microliter sample volumes while also leveraging drastic noise rejection via lock-in detection. The multichannel µChopper device should prove particularly useful in analyzing precious biological samples or for dynamic analyses at small volume scales.

13.
Lab Chip ; 18(19): 2926-2935, 2018 09 26.
Article in English | MEDLINE | ID: mdl-30112543

ABSTRACT

A fully automated droplet generation and analysis device based on pressure driven push-up valves for precise pumping of fluid and volumetric metering has been developed for high resolution hormone secretion sampling and measurement. The device consists of a 3D-printer templated reservoir for single cells or single tissue culturing, a Y-shaped channel for reagents and sample mixing, a T-junction channel for droplet formation, a reference channel to overcome drifts in fluorescence signal, and a long droplet storage channel allowing incubation for homogeneous immunoassays. The droplets were made by alternating peristaltic pumping of aqueous and oil phases. Device operation was automated, giving precise control over several droplet parameters such as size, oil spacing, and ratio of sample and reference droplets. By integrating an antibody-oligonucleotide based homogeneous immunoassay on-chip, high resolution temporal sampling into droplets was combined with separation-free quantification of insulin secretion from single islets of Langerhans using direct optical readout from the droplets. Quantitative assays of glucose-stimulated insulin secretion were demonstrated at 15 second temporal resolution while detecting as low as 10 amol per droplet, revealing fast insulin oscillations that mirror well-known intracellular calcium signals. This droplet sampling and direct optical analysis approach effectively digitizes the secretory time record from cells into droplets, and the system should be generalizable to a variety of cells and tissue types.


Subject(s)
Immunoassay/instrumentation , Islets of Langerhans/metabolism , Lab-On-A-Chip Devices , Animals , Automation , Equipment Design , Insulin/metabolism , Mice , Mice, Inbred C57BL , Systems Integration
14.
Anal Chem ; 90(5): 3584-3591, 2018 03 06.
Article in English | MEDLINE | ID: mdl-29385341

ABSTRACT

Electrochemical bioanalytical sensors with oligonucleotide transducer molecules have been recently extended for quantifying a wide range of biomolecules, from small drugs to large proteins. Short DNA or RNA strands have gained attention recently due to the existence of circulating oligonucleotides in human blood, yet challenges remain for adequately sensing these targets at electrode surfaces. In this work, we have developed a quantitative electrochemical method which uses target-induced proximity of a single-branched DNA structure to drive hybridization at an electrode surface, with readout by square-wave voltammetry (SWV). Using custom instrumentation, we first show that precise control of temperature can provide both electrochemical signal amplification and background signal depreciation in SWV readout of small oligonucleotides. Next, we thoroughly compared 25 different combinations of binding energies by their signal-to-background ratios and differences. These data served as a guide to select the optimal parameters of binding energy, SWV frequency, and assay temperature. Finally, the influence of experimental workflow on the sensitivity and limit of detection (LOD) of the sensor is demonstrated. This study highlights the importance of precisely controlling temperature and SWV frequency in DNA-driven assays on electrode surfaces while also presenting a novel instrumental design for fine-tuning of such systems.


Subject(s)
Branched DNA Signal Amplification Assay/instrumentation , Electrochemical Techniques/instrumentation , Oligonucleotides/analysis , Electrodes , Equipment Design , Humans , Temperature
15.
Anal Bioanal Chem ; 410(3): 791-800, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29214530

ABSTRACT

Recent breakthroughs in organ-on-a-chip and related technologies have highlighted the extraordinary potential for microfluidics to not only make lasting impacts in the understanding of biological systems but also to create new and important in vitro culture platforms. Adipose tissue (fat), in particular, is one that should be amenable to microfluidic mimics of its microenvironment. While the tissue was traditionally considered important only for energy storage, it is now understood to be an integral part of the endocrine system that secretes hormones and responds to various stimuli. As such, adipocyte function is central to the understanding of pathological conditions such as obesity, diabetes, and metabolic syndrome. Despite the importance of the tissue, only recently have significant strides been made in studying dynamic function of adipocytes or adipose tissues on microfluidic devices. In this critical review, we highlight new developments in the special class of microfluidic systems aimed at culture and interrogation of adipose tissue, a sub-field of microfluidics that we contend is only in its infancy. We close by reflecting on these studies as we forecast a promising future, where microfluidic technologies should be capable of mimicking the adipose tissue microenvironment and provide novel insights into its physiological roles in the normal and diseased states. Graphical abstract This critical review focuses on recent developments and challenges in applying microfluidic systems to the culture and analysis of adipocytes and adipose tissue.


Subject(s)
Adipocytes/metabolism , Adipose Tissue/metabolism , Microfluidic Analytical Techniques/methods , Adipocytes/cytology , Adipokines/metabolism , Adipose Tissue/cytology , Animals , Cell Culture Techniques/instrumentation , Cell Culture Techniques/methods , Equipment Design , Fatty Acids/metabolism , Glucose/metabolism , Hormones/metabolism , Humans , Insulin/metabolism , Microfluidic Analytical Techniques/instrumentation , Tissue Culture Techniques/instrumentation , Tissue Culture Techniques/methods
16.
Anal Chem ; 89(16): 8517-8523, 2017 08 15.
Article in English | MEDLINE | ID: mdl-28696682

ABSTRACT

Homogeneous assays are characterized by rapidity, low cost, and simple workflows. However, relatively few specialized homogeneous platforms have garnered significant use in biological studies. Inconsistencies in matrix interferences, limited multiplexability, and the requirement for specialized instrumentation are among the various reasons for delayed acceptance. Recently, we have shown that DNA-driven protein assays using thermofluorimetric analysis (TFA) can limit matrix interference and promote multiplexing, all while requiring only a standard qPCR instrument for readout. Here, we show that homogeneous, one step (mix-and-read) TFA methods can be extended to the analysis of both a small molecule second messenger, cyclic adenosine monophosphate (cAMP), and a downstream cell-secreted hormone, insulin. Differential thermal analysis of DNA melting in these assays allowed analytical discrimination of background and signal without physical separation. The direct-readout, differential nature of TFA also promoted assay consistency and minimized calibration burden; analyte response curves were shown to be highly repeatable for up to 7 months. TFA protocols were validated by homogeneous quantification of both cAMP and insulin from single pancreatic islets undergoing a variety of treatments (glucose, KCl, glucose-responsive insulinotropic peptide (GIP), forskolin) that act upon glucose transporters, potassium and calcium channels, and G-protein-coupled receptors to modulate exocytosis. The results of this study suggest that TFA should be applicable to homogeneous quantification of a variety of small molecule messengers and protein analytes with standard instrumentation, thereby simplifying workflows in studies of cell-signaling cascades.


Subject(s)
Cyclic AMP/metabolism , Fluorometry , Hormones/metabolism , Pancreas/chemistry , Signal Transduction , Temperature , Animals , Calibration , Cyclic AMP/chemistry , DNA/analysis , Hormones/chemistry , Male , Mice , Mice, Inbred C57BL , Pancreas/metabolism , RNA/analysis
17.
Anal Chem ; 89(11): 6153-6159, 2017 06 06.
Article in English | MEDLINE | ID: mdl-28467848

ABSTRACT

Fluorescence is widely used for small-volume analysis and is a primary tool for on-chip detection in microfluidic devices, yet additional expertise, more elaborate optics, and phase-locked detectors are needed for ultrasensitive measurements. Recently, we designed a microfluidic analog to an optical beam chopper (µChopper) that alternated formation of picoliter volume sample and reference droplets. Without complex optics, the device negated large signal drifts (1/f noise), allowing absorbance detection in a mere 27 µm optical path. Here, we extend the µChopper concept to fluorescence detection with standard wide-field microscope optics. Precision of droplet control in the µChopper was improved by automation with pneumatic valves, allowing fluorescence measurements to be strictly phase locked at 0.04 Hz bandwidth to droplets generated at 3.50 Hz. A detection limit of 12 pM fluorescein was achieved when sampling 20 droplets, and as few as 310 zeptomoles (3.1 × 10-19 mol) were detectable in single droplets (8.8 nL). When applied to free fatty acid (FFA) uptake in 3T3-L1 adipocytes, this µChopper permitted single-cell FFA uptake rates to be quantified at 3.5 ± 0.2 × 10-15 mol cell-1 for the first time. Additionally, homogeneous immunoassays in droplets exhibited insulin detection limits of 9.3 nM or 190 amol (1.9 × 10-16 mol). The combination of this novel, automated µChopper with lock-in detection provides a high-performance platform for detecting small differences with standard fluorescence optics, particularly in situations where sample volume is limited. The technique should be simple to implement into a variety of other droplet fluidics devices.


Subject(s)
Automation , Fatty Acids/analysis , Fluorescence , Microfluidic Analytical Techniques , Optical Imaging , 3T3-L1 Cells , Adipocytes/chemistry , Adipocytes/metabolism , Animals , Fatty Acids/metabolism , Mice , Particle Size , Surface Properties
18.
Methods Mol Biol ; 1566: 185-201, 2017.
Article in English | MEDLINE | ID: mdl-28244052

ABSTRACT

Microfluidic culture of primary adipose tissue allows for reduced sample and reagent volumes as well as constant media perfusion of the cells. By continuously flowing media over the tissue, microfluidic sampling systems can more accurately mimic vascular flow in vivo. Quantitative measurements can be performed on or off chip to provide time-resolved secretion data, furthering insight into the dynamics of the function of adipose tissue. Buoyancy resulting from the large lipid storage capacity in this tissue presents a unique challenge for culture, and it is important to account for this buoyancy during microdevice design. Herein, we describe approaches for microfluidic device fabrication that utilize 3D-printed interface templating to help counteract cell buoyancy. We apply such methods to the culture of both isolated, dispersed primary adipocytes and epididymal adipose explants. To facilitate more widespread adoption of the methodology, the devices presented here are designed for user-friendly operation. Only handheld syringes are needed to control flow, and devices are inexpensive and disposable.


Subject(s)
Adipocytes , Adipose Tissue , Cell Culture Techniques/instrumentation , Cell Culture Techniques/methods , Microfluidic Analytical Techniques/instrumentation , Microfluidics/instrumentation , Adipocytes/cytology , Adipocytes/metabolism , Adipose Tissue/cytology , Adipose Tissue/metabolism , Animals , Equipment Design , Lab-On-A-Chip Devices , Male , Mice
19.
Lab Chip ; 17(2): 341-349, 2017 01 17.
Article in English | MEDLINE | ID: mdl-27990542

ABSTRACT

A fully automated, 16-channel microfluidic input/output multiplexer (µMUX) has been developed for interfacing to primary cells and to improve understanding of the dynamics of endocrine tissue function. The device utilizes pressure driven push-up valves for precise manipulation of nutrient input and hormone output dynamics, allowing time resolved interrogation of the cells. The ability to alternate any of the 16 channels from input to output, and vice versa, provides for high experimental flexibility without the need to alter microchannel designs. 3D-printed interface templates were custom designed to sculpt the above-channel polydimethylsiloxane (PDMS) in microdevices, creating millimeter scale reservoirs and confinement chambers to interface primary murine islets and adipose tissue explants to the µMUX sampling channels. This µMUX device and control system was first programmed for dynamic studies of pancreatic islet function to collect ∼90 minute insulin secretion profiles from groups of ∼10 islets. The automated system was also operated in temporal stimulation and cell imaging mode. Adipose tissue explants were exposed to a temporal mimic of post-prandial insulin and glucose levels, while simultaneous switching between labeled and unlabeled free fatty acid permitted fluorescent imaging of fatty acid uptake dynamics in real time over a ∼2.5 hour period. Application with varying stimulation and sampling modes on multiple murine tissue types highlights the inherent flexibility of this novel, 3D-templated µMUX device. The tissue culture reservoirs and µMUX control components presented herein should be adaptable as individual modules in other microfluidic systems, such as organ-on-a-chip devices, and should be translatable to different tissues such as liver, heart, skeletal muscle, and others.


Subject(s)
Adipose Tissue/cytology , Adipose Tissue/metabolism , Islets of Langerhans/cytology , Islets of Langerhans/metabolism , Lab-On-A-Chip Devices , Tissue Culture Techniques/instrumentation , Animals , Automation , Equipment Design , Male , Mice , Mice, Inbred C57BL
20.
Analyst ; 141(20): 5714-5721, 2016 Oct 21.
Article in English | MEDLINE | ID: mdl-27486597

ABSTRACT

Employing 3D-printed templates for macro-to-micro interfacing, a passively operated polydimethysiloxane (PDMS) microfluidic device was designed for time-resolved secretion sampling from primary murine islets and epidiymal white adipose tissue explants. Interfacing in similar devices is typically accomplished through manually punched or drilled fluidic reservoirs. We previously introduced the concept of using hand fabricated polymer inserts to template cell culture and sampling reservoirs into PDMS devices, allowing rapid stimulation and sampling of endocrine tissue. However, fabrication of the fluidic reservoirs was time consuming, tedious, and was prone to errors during device curing. Here, we have implemented computer-aided design and 3D printing to circumvent these fabrication obstacles. In addition to rapid prototyping and design iteration advantages, the ability to match these 3D-printed interface templates with channel patterns is highly beneficial. By digitizing the template fabrication process, more robust components can be produced with reduced fabrication variability. Herein, 3D-printed templates were used for sculpting millimetre-scale reservoirs into the above-channel, bulk PDMS in passively-operated, eight-channel devices designed for time-resolved secretion sampling of murine tissue. Devices were proven functional by temporally assaying glucose-stimulated insulin secretion from <10 pancreatic islets and glycerol secretion from 2 mm adipose tissue explants, suggesting that 3D-printed interface templates could be applicable to a variety of cells and tissue types. More generally, this work validates desktop 3D printers as versatile interfacing tools in microfluidic laboratories.


Subject(s)
Cell Culture Techniques , Glucose/analysis , Glycerol/analysis , Lab-On-A-Chip Devices , Printing, Three-Dimensional , Adipose Tissue/cytology , Animals , Islets of Langerhans/cytology , Islets of Langerhans/metabolism , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...