Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Food Drug Anal ; 25(2): 306-315, 2017 04.
Article in English | MEDLINE | ID: mdl-28911672

ABSTRACT

Phaleria macrocarpa, known as "Mahkota Dewa", is a widely used medicinal plant in Malaysia. This study focused on the characterization of α-glucosidase inhibitory activity of P. macrocarpa extracts using Fourier transform infrared spectroscopy (FTIR)-based metabolomics. P. macrocarpa and its extracts contain thousands of compounds having synergistic effect. Generally, their variability exists, and there are many active components in meager amounts. Thus, the conventional measurement methods of a single component for the quality control are time consuming, laborious, expensive, and unreliable. It is of great interest to develop a rapid prediction method for herbal quality control to investigate the α-glucosidase inhibitory activity of P. macrocarpa by multicomponent analyses. In this study, a rapid and simple analytical method was developed using FTIR spectroscopy-based fingerprinting. A total of 36 extracts of different ethanol concentrations were prepared and tested on inhibitory potential and fingerprinted using FTIR spectroscopy, coupled with chemometrics of orthogonal partial least square (OPLS) at the 4000-400 cm-1 frequency region and resolution of 4 cm-1. The OPLS model generated the highest regression coefficient with R2Y = 0.98 and Q2Y = 0.70, lowest root mean square error estimation = 17.17, and root mean square error of cross validation = 57.29. A five-component (1+4+0) predictive model was build up to correlate FTIR spectra with activity, and the responsible functional groups, such as -CH, -NH, -COOH, and -OH, were identified for the bioactivity. A successful multivariate model was constructed using FTIR-attenuated total reflection as a simple and rapid technique to predict the inhibitory activity.


Subject(s)
Thymelaeaceae , Calibration , Food Contamination , Least-Squares Analysis , Malaysia , Multivariate Analysis , Plant Extracts , Spectroscopy, Fourier Transform Infrared , alpha-Glucosidases
2.
J Pharm Pharmacol ; 56(12): 1519-25, 2004 Dec.
Article in English | MEDLINE | ID: mdl-15563758

ABSTRACT

The aim of the present study was to assess the cytotoxic and antimicrobial properties of seven new thiocyanato complexes: Ni(C(9)H(11)N(2)O)(SCN), Cu(C(9)H(11)N(2)O)(SCN), Pd(C(9)H(11)N(2)O)(SCN), Pt(C(9)H(11)N(2) O) (SCN), K[Ti(C(9)H(11)N(2)O)(SCN)(3)], Au(C(9)H(11)N(2)O)(SCN), and K[V(O)(C(9)H(11)N(2)O)(SCN)] (T(1)-T(7), respectively). All the complexes showed toxicity against brine shrimp nauplii (Artemia salina L.). The titanium-based complex, T(5), exhibited potent toxicity, with a lethal concentration 50% (the concentration of test compound that kills 50% of A. salina) value of 1.59 microg mL(-1). These new complexes also exhibited promising antibacterial and antifungal properties. A macrodilution technique was used to estimate the minimum inhibitory concentrations of the seven bioactive complexes. Minimum inhibitory concentrations were found to be 8-64 microg mL(-1) against the tested bacterial species.


Subject(s)
Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/toxicity , Antifungal Agents/chemistry , Antifungal Agents/toxicity , Thiocyanates/chemistry , Thiocyanates/toxicity , Animals , Artemia/drug effects , Artemia/growth & development , Microbial Sensitivity Tests/statistics & numerical data
SELECTION OF CITATIONS
SEARCH DETAIL
...