Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Insect Physiol ; 107: 34-40, 2018.
Article in English | MEDLINE | ID: mdl-29432766

ABSTRACT

Stable isotopes are valuable tools in physiological and ecological research, as they can be used to estimate diet, habitat use, and resource allocation. However, in most cases a priori knowledge of two key properties of stable isotopes is required, namely their rate of incorporation into the body (incorporation rate) and the change of isotope values between consumers and resources that arises during incorporation of the isotopes into the consumer's tissues (trophic discrimination). Previous studies have quantified these properties across species and tissue types, but little is known about how they vary with temperature, a key driver of many biological rates and times. Here, we explored for the first time how temperature affects both carbon incorporation rate and trophic discrimination via growth rates, using the domestic cricket, Acheta domesticus. We raised crickets at 16 °C, 21 °C, and 26 °C and showed that temperature increased carbon isotope incorporation rate, which was driven by both an increased growth rate and catabolism at higher temperatures. Trophic discrimination of carbon isotopes decreased at higher temperatures, which we attributed to either lower activation energies needed to synthesize non-essential amino acids at higher temperatures or the increased utilization of available resources of consumers at higher temperatures. Our results demonstrate that temperature is a key driver of both carbon isotope incorporation rate and trophic discrimination, via mechanisms that likely persist across all ectotherms. Experiments to determine incorporation rates and trophic discrimination factors in ectotherms must include temperature as a major factor, and natural variation in temperature might have significant effects on these isotopic properties that then can affect inferences made from isotope values.


Subject(s)
Carbon Isotopes/analysis , Carbon/metabolism , Gryllidae/physiology , Temperature , Animal Nutritional Physiological Phenomena , Animals , Diet , Gryllidae/growth & development , Nymph/growth & development , Nymph/physiology
2.
R Soc Open Sci ; 4(3): 170060, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28405403

ABSTRACT

Intra-population niche differences in generalist foragers have captured the interest of ecologists, because such individuality can have important ecological and evolutionary implications. Few researchers have investigated how these differences affect the relationships among ecologically similar, sympatric species. Using stable isotopes, stomach contents, morphology and habitat preference, we examined niche partitioning within a group of five anurans and determined whether variation within species could facilitate resource partitioning. Species partitioned their niches by trophic level and by foraging habitat. However, there was considerable intraspecific variation in trophic level, with larger individuals generally feeding at higher trophic levels. For species at intermediate trophic levels, smaller individuals overlapped in trophic level with individuals of smaller species and larger individuals overlapped with the smallest individuals from larger species. Species varied in carbon isotopes; species with enriched carbon isotope ratios foraged farther from ponds, whereas species with depleted carbon isotope values foraged closer to ponds. Our study shows that these species partition their niches by feeding at different trophic levels and foraging at different distances from ponds. The intraspecific variation in trophic level decreased the number of individuals from each species that overlapped in trophic level with individuals from other species, which can facilitate species coexistence.

3.
Physiol Biochem Zool ; 88(5): 576-85, 2015.
Article in English | MEDLINE | ID: mdl-26658253

ABSTRACT

Stable isotope analysis is an increasingly useful ecological tool, but its accuracy depends on quantifying the tissue-specific trophic discrimination factors (TDFs) and isotopic incorporation rates for focal taxa. Despite the technique's ubiquity, most laboratory experiments determining TDFs and incorporation rates have focused on birds, mammals, and fish; we know little about terrestrial ectotherms, and amphibians in particular are understudied. In this study we used two controlled feeding experiments to determine carbon (δ(13)C) and nitrogen (δ(15)N) isotope TDFs for skin, whole blood, and bone collagen and incorporation rates for skin and whole blood in adult green frogs, Lithobates clamitans. The mean (±SD) TDFs for δ(13)C were 0.1‰ (±0.4‰) for skin, 0.5‰ (±0.5‰) for whole blood, and 1.6‰ (0.6‰) for bone collagen. The mean (±SD) TDFs for δ(15)N were 2.3‰ (±0.5‰) for skin, 2.3‰ (±0.4‰) for whole blood, and 3.1‰ (±0.6‰) for bone collagen. A combination of different isotopic incorporation models was best supported by our data. Carbon in skin was the only tissue in which incorporation was best explained by two compartments, which had half-lives of 89 and 8 d. The half-life of carbon in whole blood was 69 d. Half-lives for nitrogen were 75 d for skin and 71 d for whole blood. Our results help fill a taxonomic gap in our knowledge of stable isotope dynamics and provide ecologists with a method to measure anuran diets.


Subject(s)
Carbon/metabolism , Nitrogen/metabolism , Rana clamitans/metabolism , Animals , Bone and Bones/chemistry , Carbon Isotopes , Collagen/chemistry , Nitrogen Isotopes/metabolism , Skin/chemistry , Time Factors
4.
Biol Lett ; 10(4): 20140009, 2014.
Article in English | MEDLINE | ID: mdl-24759367

ABSTRACT

Few studies have examined how landmarks affect territories' fundamental characteristics. In this field study, we investigated effects of landmarks on territory size, shape and location in a cichlid fish (Amatitlania siquia). We provided cans as breeding sites and used plastic plants as landmarks. During 10 min trials, we recorded locations where residents chased intruders and used those locations to outline and measure the territory. In two experiments, we observed pairs without landmarks and with either a point landmark (one plant) or linear landmark (four plants) placed near the nest can. We alternated which trial occurred first and performed the second trial 24 h after the first. Territories were approximately round without landmarks or with a point landmark but were significantly more elongated when we added a linear landmark. Without landmarks, nests were centrally located; however, with any landmark, pairs set territory boundaries closer to the landmark and thus the nest. Territory size was significantly reduced in the presence of any landmark. This reduction suggests that a smaller territory with well-defined boundaries has greater benefits than a larger territory with less well-defined borders.


Subject(s)
Cichlids/physiology , Environment , Homing Behavior , Territoriality , Animals , Sexual Behavior, Animal
SELECTION OF CITATIONS
SEARCH DETAIL
...