Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Function (Oxf) ; 4(6): zqad058, 2023.
Article in English | MEDLINE | ID: mdl-37954975

ABSTRACT

Individuals with Down syndrome (Ds) are at increased risk of respiratory infection, aspiration pneumonia, and apnea. The Ts65Dn mouse is a commonly used model of Ds, but there have been no formal investigations of awake breathing and respiratory muscle function in these mice. We hypothesized that breathing would be impaired in Ts65Dn vs. wild-type (WT), and would be mediated by both neural and muscular inputs. Baseline minute ventilation was not different at 3, 6, or 12 mo of age. However, VT/Ti, a marker of the neural drive to breathe, was lower in Ts65Dn vs. WT and central apneas were more prevalent. The response to breathing hypoxia was not different, but the response to hypercapnia was attenuated, revealing a difference in carbon dioxide sensing, and/or motor output in Ts65Dn. Oxygen desaturations were present in room air, demonstrating that ventilation may not be sufficient to maintain adequate oxygen saturation in Ts65Dn. We observed no differences in arterial PO2 or PCO2, but Ts65Dn had lower hemoglobin and hematocrit. A retrospective medical record review of 52,346 Ds and 52,346 controls confirmed an elevated relative risk of anemia in Ds. We also performed eupneic in-vivo electromyography and in-vitro muscle function and histological fiber typing of the diaphragm, and found no difference between strains. Overall, conscious respiration is impaired in Ts65Dn, is mediated by neural mechanisms, and results in reduced hemoglobin saturation. Oxygen carrying capacity is reduced in Ts65Dn vs. WT, and we demonstrate that individuals with Ds are also at increased risk of anemia.


Subject(s)
Anemia , Down Syndrome , Mice , Animals , Oxygen , Down Syndrome/genetics , Retrospective Studies , Conservation of Natural Resources , Respiration , Hemoglobins
2.
J Vis Exp ; (158)2020 04 28.
Article in English | MEDLINE | ID: mdl-32420981

ABSTRACT

Unrestrained barometric plethysmography (UBP) is a method for quantifying the pattern of breathing in mice, where breathing frequency, tidal volume, and minute ventilation are routinely reported. Moreover, information can be collected regarding the neural output of breathing, including the existence of central apneas and augmented breaths. An important consideration for UBP is obtaining a breathing segment with a minimal impact of anxious or active behaviors, to elucidate the response to breathing challenges. Here, we present a protocol that allows for short, quiet baselines to be obtained in aged mice, comparable to waiting for longer bouts of quiet breathing. The use of shorter time segments is valuable, as some strains of mice may be increasingly excitable or anxious, and longer periods of quiet breathing may not be achieved within a reasonable timeframe. We placed 22 month-old mice in a UBP chamber and compared four 15 s quiet breathing segments between minutes 60-120 to a longer 10 min quiet breathing period that took 2-3 h to acquire. We also obtained counts of central apneas and augmented breaths prior to the quiet breathing segments, following a 30 min familiarization period. We show that 10 min of quiet breathing is comparable to using a much shorter 15 s duration. Additionally, the time leading up to these 15 s quiet breathing segments can be used to gather data regarding apneas of central origin. This protocol allows investigators to collect pattern-of-breathing data in a set amount of time and makes quiet baseline measures feasible for mice that may exhibit increased amounts of excitable behavior. The UBP methodology itself provides a useful and noninvasive way to collect pattern-of-breathing data and allows for mice to be tested over several time points.


Subject(s)
Plethysmography/methods , Respiration/immunology , Animals , Male , Mice
3.
Physiol Rep ; 7(8): e14060, 2019 04.
Article in English | MEDLINE | ID: mdl-31004390

ABSTRACT

Unrestrained barometric plethysmography is a common method used for characterizing breathing patterns in small animals. One source of variation between unrestrained barometric plethysmography studies is the segment of baseline. Baseline may be analyzed as a predetermined time-point, or using tailored segments when each animal is visually calm. We compared a quiet, minimally active (no sniffing/grooming) breathing segment to a predetermined time-point at 1 h for baseline measurements in young and middle-aged mice during the dark and light cycles. Additionally, we evaluated the magnitude of change for gas challenges based on these two baseline segments. C57BL/6JEiJ x C3Sn.BliA-Pde6b+ /DnJ male mice underwent unrestrained barometric plethysmography with the following baselines used to determine breathing frequency, tidal volume (VT) and minute ventilation (VE): (1) 30-sec of quiet breathing and (2) a 10-min period from 50 to 60 min. Animals were also exposed to 10 min of hypoxic (10% O2 , balanced N2 ), hypercapnic (5% CO2 , balanced air) and hypoxic hypercapnic (10% O2 , 5% CO2 , balanced N2 ) gas. Both frequency and VE were higher during the predetermined 10-min baseline versus the 30-sec baseline, while VT was lower (P < 0.05). However, VE/VO2 was similar between the baseline time segments (P > 0.05) in an analysis of one cohort. During baseline, dark cycle testing had increased VT values versus those in the light (P < 0.05). For gas challenges, both frequency and VE showed higher percent change from the 30-sec baseline compared to the predetermined 10-min baseline (P < 0.05), while VT showed a greater change from the 10-min baseline (P < 0.05). Dark cycle hypoxic exposure resulted in larger percent change in breathing frequency versus the light cycle (P < 0.05). Overall, light and dark cycle pattern of breathing differences emerged along with differences between the 30-sec behavior observational method versus a predetermined time segment for baseline.


Subject(s)
Aging/physiology , Circadian Rhythm , Hypercapnia/physiopathology , Hypoxia/physiopathology , Respiration , Animals , Male , Mice , Mice, Inbred C57BL
SELECTION OF CITATIONS
SEARCH DETAIL
...