Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 115(12): 3180-3185, 2018 03 20.
Article in English | MEDLINE | ID: mdl-29511102

ABSTRACT

Monoterpenoid indole alkaloids (MIAs) possess a diversity of alkaloid skeletons whose biosynthesis is poorly understood. A bioinformatic search of candidate genes, combined with their virus-induced gene silencing, targeted MIA profiling and in vitro/in vivo pathway reconstitution identified and functionally characterized six genes as well as a seventh enzyme reaction required for the conversion of 19E-geissoschizine to tabersonine and catharanthine. The involvement of pathway intermediates in the formation of four MIA skeletons is described, and the role of stemmadenine-O-acetylation in providing necessary reactive substrates for the formation of iboga and aspidosperma MIAs is described. The results enable the assembly of complex dimeric MIAs used in cancer chemotherapy and open the way to production of many other biologically active MIAs that are not easily available from nature.


Subject(s)
Carbolines/metabolism , Catharanthus/metabolism , Indole Alkaloids/metabolism , Plant Proteins/genetics , Aspidosperma/genetics , Aspidosperma/metabolism , Catharanthus/genetics , Enzymes/genetics , Enzymes/metabolism , Gene Expression Regulation, Plant , Gene Silencing , NADP/metabolism , Plant Proteins/metabolism , Quinolines/metabolism , Strychnos/metabolism , Tabernaemontana/metabolism , Vinca Alkaloids/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...