Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Toxicol Sci ; 200(1): 165-182, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38574381

ABSTRACT

Like many per- or polyfluorinated alkyl substances (PFAS), toxicity studies with HFPO-DA (ammonium, 2,3,3,3-tetrafluoro-2-(heptafluoropropoxy)-propanoate), a short-chain PFAS used in the manufacture of some types of fluorinated polymers, indicate that the liver is the primary target of toxicity in rodents following oral exposure. Although the current weight of evidence supports the PPARα mode of action (MOA) for liver effects in HFPO-DA-exposed mice, alternate MOAs have also been hypothesized including PPARγ or cytotoxicity. To further evaluate the MOA for HFPO-DA in rodent liver, transcriptomic analyses were conducted on samples from primary mouse, rat, and pooled human hepatocytes treated for 12, 24, or 72 h with various concentrations of HFPO-DA, or agonists of PPARα (GW7647), PPARγ (rosiglitazone), or cytotoxic agents (ie, acetaminophen or d-galactosamine). Concordance analyses of enriched pathways across chemicals within each species demonstrated the greatest concordance between HFPO-DA and PPARα agonist GW7647-treated hepatocytes compared with the other chemicals evaluated. These findings were supported by benchmark concentration modeling and predicted upstream regulator results. In addition, transcriptomic analyses across species demonstrated a greater transcriptomic response in rodent hepatocytes treated with HFPO-DA or agonists of PPARα or PPARγ, indicating rodent hepatocytes are more sensitive to HFPO-DA or PPARα/γ agonist treatment. These results are consistent with previously published transcriptomic analyses and further support that liver effects in HFPO-DA-exposed rodents are mediated through rodent-specific PPARα signaling mechanisms as part of the MOA for PPARα activator-induced rodent hepatocarcinogenesis. Thus, effects observed in mouse liver are not appropriate endpoints for toxicity value development for HFPO-DA in human health risk assessment.


Subject(s)
Hepatocytes , PPAR alpha , PPAR gamma , Transcriptome , Animals , Hepatocytes/drug effects , Hepatocytes/metabolism , PPAR alpha/agonists , PPAR alpha/genetics , PPAR alpha/metabolism , Humans , PPAR gamma/genetics , PPAR gamma/agonists , PPAR gamma/metabolism , Transcriptome/drug effects , Male , Mice , Fluorocarbons/toxicity , Rats , Propionates/toxicity , Cells, Cultured , Gene Expression Profiling , Rosiglitazone/pharmacology , Rosiglitazone/toxicity , Rats, Sprague-Dawley , Mice, Inbred C57BL , Species Specificity , Dose-Response Relationship, Drug , Butyrates , Phenylurea Compounds
2.
Toxicol Sci ; 200(1): 183-198, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38574385

ABSTRACT

Recent in vitro transcriptomic analyses for the short-chain polyfluoroalkyl substance, HFPO-DA (ammonium, 2,3,3,3-tetrafluoro-2-(heptafluoropropoxy)-propanoate), support conclusions from in vivo data that HFPO-DA-mediated liver effects in mice are part of the early key events of the peroxisome proliferator-activated receptor alpha (PPARα) activator-induced rodent hepatocarcinogenesis mode of action (MOA). Transcriptomic responses in HFPO-DA-treated rodent hepatocytes have high concordance with those treated with a PPARα agonist and lack concordance with those treated with PPARγ agonists or cytotoxic agents. To elucidate whether HFPO-DA-mediated transcriptomic responses in mouse liver are PPARα-dependent, additional transcriptomic analyses were conducted on samples from primary PPARα knockout (KO) and wild-type (WT) mouse hepatocytes exposed for 12, 24, or 72 h with various concentrations of HFPO-DA, or well-established agonists of PPARα (GW7647) and PPARγ (rosiglitazone), or cytotoxic agents (acetaminophen or d-galactosamine). Pathway and predicted upstream regulator-level responses were highly concordant between HFPO-DA and GW7647 in WT hepatocytes. A similar pattern was observed in PPARα KO hepatocytes, albeit with a distinct temporal and concentration-dependent delay potentially mediated by compensatory responses. This delay was not observed in PPARα KO hepatocytes exposed to rosiglitazone, acetaminophen, d-galactosamine. The similarity in transcriptomic signaling between HFPO-DA and GW7647 in both the presence and absence of PPARα in vitro indicates these compounds share a common MOA.


Subject(s)
Hepatocytes , Mice, Knockout , PPAR alpha , PPAR gamma , Transcriptome , Animals , Hepatocytes/drug effects , Hepatocytes/metabolism , PPAR alpha/agonists , PPAR alpha/genetics , PPAR alpha/metabolism , PPAR gamma/agonists , PPAR gamma/genetics , PPAR gamma/metabolism , Transcriptome/drug effects , Mice , Fluorocarbons/toxicity , Propionates/pharmacology , Propionates/toxicity , Mice, Inbred C57BL , Male , Cells, Cultured , Gene Expression Profiling , Acetaminophen/toxicity , Cytotoxins/toxicity , Butyrates , Phenylurea Compounds
3.
Toxics ; 11(2)2023 Feb 09.
Article in English | MEDLINE | ID: mdl-36851038

ABSTRACT

Toxicokinetic (TK) models have been used for decades to estimate concentrations of per-and polyfluoroalkyl substances (PFAS) in serum. However, model complexity has varied across studies depending on the application and the state of the science. This scoping effort seeks to systematically map the current landscape of PFAS TK models by categorizing different trends and similarities across model type, PFAS, and use scenario. A literature review using Web of Science and SWIFT-Review was used to identify TK models used for PFAS. The assessment covered publications from 2005-2020. PFOA, the PFAS for which most models were designed, was included in 69 of the 92 papers, followed by PFOS with 60, PFHxS with 22, and PFNA with 15. Only 4 of the 92 papers did not include analysis of PFOA, PFOS, PFNA, or PFHxS. Within the corpus, 50 papers contained a one-compartment model, 17 two-compartment models were found, and 33 used physiologically based pharmacokinetic (PBTK) models. The scoping assessment suggests that scientific interest has centered around two chemicals-PFOA and PFOS-and most analyses use one-compartment models in human exposure scenarios.

4.
J Expo Sci Environ Epidemiol ; 33(1): 56-68, 2023 01.
Article in English | MEDLINE | ID: mdl-34373583

ABSTRACT

BACKGROUND: Human exposure to per- and polyfluoroalkyl substances has been modeled to estimate serum concentrations. Given that the production and use of these compounds have decreased in recent years, especially PFOA and PFOS, and that additional concentration data have become available from the US and other industrialized countries over the past decade, aggregate median intakes of these two compounds were estimated using more recent data. METHODS: Summary statistics from secondary sources were collected, averaged, and mapped for indoor and outdoor air, water, dust, and soil for PFOA and PFOS to estimate exposures for adults and children. European dietary intake estimates were used to estimate daily intake from food. RESULTS: In accordance with decreased concentrations in media, daily intake estimates among adults, i.e., 40 ng/day PFOA and 40 ng/day PFOS, are substantially lower than those reported previously, as are children's estimates of 14 ng/day PFOA and 17 ng/day PFOS. Using a first-order pharmacokinetic model, these results compare favorably to the National Health and Nutrition Examination Survey serum concentration measurements. CONCLUSION: Concomitant blood concentrations support this enhanced estimation approach that captures the decline of PFOA/PFOS serum concentration over a decade.


Subject(s)
Alkanesulfonic Acids , Fluorocarbons , Child , Adult , Humans , Environmental Exposure/analysis , Nutrition Surveys , Caprylates
5.
Toxics ; 9(11)2021 Nov 12.
Article in English | MEDLINE | ID: mdl-34822694

ABSTRACT

Exposure to chemicals is influenced by associations between the individual's location and activities as well as demographic and physiological characteristics. Currently, many exposure models simulate individuals by drawing distributions from population-level data or use exposure factors for single individuals. The Residential Population Generator (RPGen) binds US surveys of individuals and households and combines the population with physiological characteristics to create a synthetic population. In general, the model must be supported by internal consistency; i.e., values that could have come from a single individual. In addition, intraindividual variation must be representative of the variation present in the modeled population. This is performed by linking individuals and similar households across income, location, family type, and house type. Physiological data are generated by linking census data to National Health and Nutrition Examination Survey data with a model of interindividual variation of parameters used in toxicokinetic modeling. The final modeled population data parameters include characteristics of the individual's community (region, state, urban or rural), residence (size of property, size of home, number of rooms), demographics (age, ethnicity, income, gender), and physiology (body weight, skin surface area, breathing rate, cardiac output, blood volume, and volumes for body compartments and organs). RPGen output is used to support user-developed chemical exposure models that estimate intraindividual exposure in a desired population. By creating profiles and characteristics that determine exposure, synthetic populations produced by RPGen increases the ability of modelers to identify subgroups potentially vulnerable to chemical exposures. To demonstrate application, RPGen is used to estimate exposure to Toluene in an exposure modeling case example.

SELECTION OF CITATIONS
SEARCH DETAIL
...