Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Biogeogr ; 50(2): 291-301, 2023 Feb.
Article in English | MEDLINE | ID: mdl-37082564

ABSTRACT

Aim: Well-managed semi-arid forests help offset global change by storing significant amounts of carbon above- and belowground and maintaining hydrological cycles. Larger trees have been the focus of many studies due to their carbon storage and habitat quality, yet recruitment and small trees are important components of ecosystem resilience and recovery. Here, we study the impacts of disturbances (including harvesting) on recruitment, mortality and growth for a mixed conifer-broadleaf semi-arid forest type using long-term data. Location: Pilliga Forest in New South Wales, inland eastern Australia. Taxon: Callitris-Eucalyptus forests. Methods: We used data from permanent sample plots (PSPs) spanning 55 years, calculated stand structure, gains and losses and determined reasons for tree death (harvesting, fire, wind, drought and other effects). We extracted climate and fire data for the PSP locations using spatial analysis. Results: Stocking of studied forests remained stable (modest increase in basal area and stem density), despite harvesting and wildfires over 6 decades. Compared to stands in the 1940s and prior to European settlement, current forests are composed of more trees per unit area, and these trees have smaller diameters. Recruitment and sustained presence of small trees have buffered impacts of recurring drought, fire and harvesting. Fires are a common feature of the studied ecosystems and fire impacts have increased in the past 20 years, especially in unmanaged stands, where fires have reduced tree carbon by >50%. Main conclusions: Recruitment and growth of small trees are critical to offset carbon losses due to fire, drought and harvesting. All size classes have important ecological values in semi-arid forests and must be included in long-term monitoring programmes. Long-term data offer unique insights into combined effects of climate change, management and disturbances, especially for fire-prone ecosystems, where small trees are often susceptible to fire.

2.
Theor Appl Climatol ; 114(3-4): 393-406, 2013.
Article in English | MEDLINE | ID: mdl-26412916

ABSTRACT

The interpretation and communication of fire danger warning levels based on fire weather index values are critical for fire management activities. A number of different indices have been developed for various environmental conditions, and many of them are currently applied in operational warning systems. To select an appropriate combination of such indices to work in different ecoregions in mountainous, hilly and flat terrain is challenging. This study analyses the performance of a total of 22 fire weather indices and two raw meteorological variables to predict wildfire occurrence for different ecological regions of Austria with respect to the different characteristics in climate and fire regimes. A median-based linear model was built based on percentile results on fire days and non-fire days to get quantifiable measures of index performance using slope and intercept of an index on fire days. We highlight the finding that one single index is not optimal for all Austrian regions in both summer and winter fire seasons. The summer season (May-November) shows that the Canadian build-up index, the Keetch Byram Drought Index and the mean daily temperature have the best performance; in the winter season (December-April), the M68dwd is the best performing index. It is shown that the index performance on fire days where larger fires appeared is better and that the uncertainties related to the location of the meteorological station can influence the overall results. A proposal for the selection of the best performing fire weather indices for each Austrian ecoregion is made.

3.
Tree Physiol ; 31(3): 262-74, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21512099

ABSTRACT

The aim of this paper is to determine whether a detectable impact of climate change is apparent in Austrian forests. In regions of complex terrain such as most of Austria, climatic trends over the past 50 years show marked geographic variability. As climate is one of the key drivers of forest growth, a comparison of growth characteristics between regions with different trends in temperature and precipitation can give insights into the impact of climatic change on forests. This study uses data from several hundred climate recording stations, interpolated to measurement sites of the Austrian National Forest Inventory (NFI). Austria as a whole shows a warming trend over the past 50 years and little overall change in precipitation. The warming trends, however, vary considerably across certain regions and regional precipitation trends vary widely in both directions, which cancel out on the national scale These differences allow the delineation of 'climatic change zones' with internally consistent climatic trends that differ from other zones. This study applies the species-specific adaptation of the biogeochemical model BIOME-BGC to Norway spruce (Picea abies (L.) Karst) across a range of Austrian climatic change zones, using input data from a number of national databases. The relative influence of extant climate change on forest growth is quantified, and compared with the far greater impact of non-climatic factors. At the national scale, climate change is found to have negligible effect on Norway spruce productivity, due in part to opposing effects at the regional level. The magnitudes of the modeled non-climatic influences on aboveground woody biomass increment increases are consistent with previously reported values of 20-40 kg of added stem carbon sequestration per kilogram of additional nitrogen deposition, while climate responses are of a magnitude difficult to detect in NFI data.


Subject(s)
Climate Change , Nitrogen/metabolism , Picea/growth & development , Plant Leaves/metabolism , Adaptation, Physiological , Austria , Biomass , Carbon/metabolism , Models, Theoretical , Picea/metabolism , Picea/physiology , Plant Leaves/growth & development , Soil , Trees/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...