Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Virol ; 90(15): 6846-6863, 2016 08 01.
Article in English | MEDLINE | ID: mdl-27194764

ABSTRACT

UNLABELLED: Mycoviruses can have a marked effect on natural fungal communities and influence plant health and productivity. However, a comprehensive picture of mycoviral diversity is still lacking. To characterize the viromes of five widely dispersed plant-pathogenic fungi, Colletotrichum truncatum, Macrophomina phaseolina, Diaporthe longicolla, Rhizoctonia solani, and Sclerotinia sclerotiorum, a high-throughput sequencing-based metatranscriptomic approach was used to detect viral sequences. Total RNA and double-stranded RNA (dsRNA) from mycelia and RNA from samples enriched for virus particles were sequenced. Sequence data were assembled de novo, and contigs with predicted amino acid sequence similarities to viruses in the nonredundant protein database were selected. The analysis identified 72 partial or complete genome segments representing 66 previously undescribed mycoviruses. Using primers specific for each viral contig, at least one fungal isolate was identified that contained each virus. The novel mycoviruses showed affinity with 15 distinct lineages: Barnaviridae, Benyviridae, Chrysoviridae, Endornaviridae, Fusariviridae, Hypoviridae, Mononegavirales, Narnaviridae, Ophioviridae, Ourmiavirus, Partitiviridae, Tombusviridae, Totiviridae, Tymoviridae, and Virgaviridae More than half of the viral sequences were predicted to be members of the Mitovirus genus in the family Narnaviridae, which replicate within mitochondria. Five viral sequences showed strong affinity with three families (Benyviridae, Ophioviridae, and Virgaviridae) that previously contained no mycovirus species. The genomic information provides insight into the diversity and taxonomy of mycoviruses and coevolution of mycoviruses and their fungal hosts. IMPORTANCE: Plant-pathogenic fungi reduce crop yields, which affects food security worldwide. Plant host resistance is considered a sustainable disease management option but may often be incomplete or lacking for some crops to certain fungal pathogens or strains. In addition, the rising issues of fungicide resistance demand alternative strategies to reduce the negative impacts of fungal pathogens. Those fungus-infecting viruses (mycoviruses) that attenuate fungal virulence may be welcome additions for mitigation of plant diseases. By high-throughput sequencing of the RNAs from 275 isolates of five fungal plant pathogens, 66 previously undescribed mycoviruses were identified. In addition to identifying new potential biological control agents, these results expand the grand view of the diversity of mycoviruses and provide possible insights into the importance of intracellular and extracellular transmission in fungus-virus coevolution.


Subject(s)
Ascomycota/virology , Fungal Viruses/classification , Fungal Viruses/genetics , Genome, Viral , Metagenomics , Plant Diseases/virology , Plants/virology , Transcriptome , Fungal Viruses/isolation & purification , High-Throughput Nucleotide Sequencing/methods , Mycelium/virology , Phylogeny , RNA, Viral/genetics
2.
J Virol ; 89(9): 5060-71, 2015 May.
Article in English | MEDLINE | ID: mdl-25694604

ABSTRACT

UNLABELLED: A recombinant strain of Sclerotinia sclerotiorum hypovirus 2 (SsHV2) was identified from a North American Sclerotinia sclerotiorum isolate (328) from lettuce (Lactuca sativa L.) by high-throughput sequencing of total RNA. The 5'- and 3'-terminal regions of the genome were determined by rapid amplification of cDNA ends. The assembled nucleotide sequence was up to 92% identical to two recently reported SsHV2 strains but contained a deletion near its 5' terminus of more than 1.2 kb relative to the other SsHV2 strains and an insertion of 524 nucleotides (nt) that was distantly related to Valsa ceratosperma hypovirus 1. This suggests that the new isolate is a heterologous recombinant of SsHV2 with a yet-uncharacterized hypovirus. We named the new strain Sclerotinia sclerotiorum hypovirus 2 Lactuca (SsHV2L) and deposited the sequence in GenBank with accession number KF898354. Sclerotinia sclerotiorum isolate 328 was coinfected with a strain of Sclerotinia sclerotiorum endornavirus 1 and was debilitated compared to cultures of the same isolate that had been cured of virus infection by cycloheximide treatment and hyphal tipping. To determine whether SsHV2L alone could induce hypovirulence in S. sclerotiorum, a full-length cDNA of the 14,538-nt viral genome was cloned. Transcripts corresponding to the viral RNA were synthesized in vitro and transfected into a virus-free isolate of S. sclerotiorum, DK3. Isolate DK3 transfected with SsHV2L was hypovirulent on soybean and lettuce and exhibited delayed maturation of sclerotia relative to virus-free DK3, completing Koch's postulates for the association of hypovirulence with SsHV2L. IMPORTANCE: A cosmopolitan fungus, Sclerotinia sclerotiorum infects more than 400 plant species and causes a plant disease known as white mold that produces significant yield losses in major crops annually. Mycoviruses have been used successfully to reduce losses caused by fungal plant pathogens, but definitive relationships between hypovirus infections and hypovirulence in S. sclerotiorum were lacking. By establishing a cause-and-effect relationship between Sclerotinia sclerotiorum hypovirus Lactuca (SsHV2L) infection and the reduction in host virulence, we showed direct evidence that hypoviruses have the potential to reduce the severity of white mold disease. In addition to intraspecific recombination, this study showed that recent interspecific recombination is an important factor shaping viral genomes. The construction of an infectious clone of SsHV2L allows future exploration of the interactions between SsHV2L and S. sclerotiorum, a widespread fungal pathogen of plants.


Subject(s)
Ascomycota/virology , Transfection , Viruses/genetics , Ascomycota/genetics , Ascomycota/growth & development , Lactuca/microbiology , Lactuca/virology , Molecular Sequence Data , Phylogeny , RNA, Viral/genetics , Sequence Analysis, DNA , Sequence Homology , Glycine max/microbiology , Virulence , Viruses/classification , Viruses/isolation & purification
3.
Arch Virol ; 159(2): 349-52, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24009061

ABSTRACT

Virulence and double-stranded RNA (dsRNA) profiles of 44 isolates of Fusarium virguliforme were compared. When grouped according to dsRNA profiles, isolates with large dsRNAs were significantly (P≤0.05) less virulent than isolates without dsRNAs. High-throughput sequence analysis of total RNA prepared from cultures with large dsRNAs identified two novel RNA viruses with genome sequences of approximately 9.3 kbp, which were named Fusarium virguliforme dsRNA mycovirus 1 and Fusarium virguliforme dsRNA mycovirus 2. The new viruses were most closely related to a group of unclassified viruses that included viruses of F. graminearum and Phlebiopsis gigantea and are related to members of the family Totiviridae.


Subject(s)
Fusarium/pathogenicity , Fusarium/virology , RNA Viruses/isolation & purification , Cluster Analysis , Fusarium/isolation & purification , High-Throughput Nucleotide Sequencing , Phylogeny , Plant Diseases/microbiology , Polyporales , RNA Viruses/genetics , RNA, Double-Stranded/genetics , RNA, Viral/genetics , Totiviridae , Viruses, Unclassified
4.
Plant Dis ; 88(9): 1011-1016, 2004 Sep.
Article in English | MEDLINE | ID: mdl-30812214

ABSTRACT

Experiments were conducted in the greenhouse to evaluate the role that infection location (taproot versus lateral root) plays in disease development of sudden death syndrome (SDS) on soybean (Glycine max) caused by the fungus Fusarium solani f. sp. glycines. Root characteristics of 12 soybean cultivars, representing a range of SDS reactions, were evaluated and compared for disease responses. A method was developed to facilitate taproot or lateral root infection. Results show that this procedure may be useful for observing a continuum of foliar and root disease responses. Significant differences in root length, surface area, and average diameter were observed among cultivars when infection occurred at the taproot or on the lateral roots. A significant correlation existed between foliar symptoms (i.e., area under the disease progress curve [AUDPC]) and root length, surface area, and volume for inoculated plants. Root volume and percent root discoloration were significantly different among individual soybean cultivars, and percent root discoloration was associated with AUDPC values only when the initial site of infection was on the lateral roots of soybean plants. Useful information about root system responses to SDS may be obtained from infection of the entire root system as opposed to only taproot infection.

SELECTION OF CITATIONS
SEARCH DETAIL
...