Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Exp Med ; 214(3): 719-735, 2017 03 06.
Article in English | MEDLINE | ID: mdl-28202494

ABSTRACT

Strict regulation of stem cell metabolism is essential for tissue functions and tumor suppression. In this study, we investigated the role of fumarate hydratase (Fh1), a key component of the mitochondrial tricarboxylic acid (TCA) cycle and cytosolic fumarate metabolism, in normal and leukemic hematopoiesis. Hematopoiesis-specific Fh1 deletion (resulting in endogenous fumarate accumulation and a genetic TCA cycle block reflected by decreased maximal mitochondrial respiration) caused lethal fetal liver hematopoietic defects and hematopoietic stem cell (HSC) failure. Reexpression of extramitochondrial Fh1 (which normalized fumarate levels but not maximal mitochondrial respiration) rescued these phenotypes, indicating the causal role of cellular fumarate accumulation. However, HSCs lacking mitochondrial Fh1 (which had normal fumarate levels but defective maximal mitochondrial respiration) failed to self-renew and displayed lymphoid differentiation defects. In contrast, leukemia-initiating cells lacking mitochondrial Fh1 efficiently propagated Meis1/Hoxa9-driven leukemia. Thus, we identify novel roles for fumarate metabolism in HSC maintenance and hematopoietic differentiation and reveal a differential requirement for mitochondrial Fh1 in normal hematopoiesis and leukemia propagation.


Subject(s)
Fumarate Hydratase/physiology , Hematopoietic Stem Cells/physiology , Animals , Female , Fumarates/metabolism , Hematopoiesis , Histones/metabolism , Leukemia, Myeloid, Acute/etiology , Mice , Mice, Inbred C57BL , Mitochondria/metabolism , NF-E2-Related Factor 2/physiology , Oxygen Consumption
2.
Twin Res Hum Genet ; 16(6): 1117-20, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24182348

ABSTRACT

Fumarase deficiency is a rare autosomal recessive inborn error of metabolism of the Krebs Tricarboxylic Acid cycle. A heavy neurological disease burden is imparted by fumarase deficiency, commonly manifesting as microcephaly, dystonia, global developmental delay, seizures, and lethality in the infantile period. Heterozygous carriers also carry an increased risk of developing hereditary leiomyomatosis and renal cell carcinoma. We describe a non-consanguineous family in whom a dichorionic diamniotic twin pregnancy resulted in twin boys with fumarase deficiency proven at the biochemical, enzymatic, and molecular levels. Their clinical phenotype included hepatic involvement. A novel mutation in the fumarate hydratase gene was identified in this family.


Subject(s)
Developmental Disabilities/genetics , Diseases in Twins/genetics , Fumarate Hydratase/deficiency , Fumarate Hydratase/genetics , Liver Diseases/genetics , Mutation/genetics , Amnion/pathology , Chorion/pathology , Developmental Disabilities/enzymology , Diseases in Twins/enzymology , Female , Humans , Infant, Newborn , Liver Diseases/enzymology , Male , Pregnancy , Pregnancy, Twin
SELECTION OF CITATIONS
SEARCH DETAIL
...