Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Ecol Evol ; 12(3): e8693, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35342568

ABSTRACT

For grazing herbivores, dung density in feeding areas is an important determinant of exposure risk to fecal-orally transmitted parasites. When host species share the same parasite species, a nonrandom distribution of their cumulative dung density and/or nonrandom ranging and feeding behavior may skew exposure risk and the relative selection pressure parasites impose on each host. The arid-adapted Grevy's zebra (Equus grevyi) can range more widely than the water-dependent plains zebra (Equus quagga), with which it shares the same species of gastrointestinal nematodes. We studied how the spatial distribution of zebra dung relates to ranging and feeding behavior to assess parasite exposure risk in Grevy's and plains zebras at a site inhabited by both zebra species. We found that zebra dung density declined with distance from water, Grevy's zebra home ranges (excluding those of territorial males) were farther from water than those of plains zebras, and plains zebra grazing areas had higher dung density than random points while Grevy's zebra grazing areas did not, suggesting a greater exposure risk in plains zebras associated with their water dependence. Fecal egg counts increased with home range proximity to water for both species, but the response was stronger in plains zebras, indicating that this host species may be particularly vulnerable to the elevated exposure risk close to water. We further ran experiments on microclimatic effects on dung infectivity and showed that fewer nematode eggs embryonated in dung in the sun than in the shade. However, only 5% of the zebra dung on the landscape was in shade, indicating that the microclimatic effects of shade on the density of infective larvae is not a major influence on exposure risk dynamics. Ranging constraints based on water requirements appear to be key mediators of nematode parasite exposure in free-ranging equids.

3.
Front Vet Sci ; 8: 637580, 2021.
Article in English | MEDLINE | ID: mdl-33681334

ABSTRACT

More than 50 million cattle are likely exposed to bovine tuberculosis (bTB) worldwide, highlighting an urgent need for bTB control strategies in low- and middle-income countries (LMICs) and other regions where the disease remains endemic and test-and-slaughter approaches are unfeasible. While Bacillus Calmette-Guérin (BCG) was first developed as a vaccine for use in cattle even before its widespread use in humans, its efficacy against bTB remains poorly understood. To address this important knowledge gap, we conducted a systematic review and meta-analysis to determine the direct efficacy of BCG against bTB challenge in cattle, and performed scenario analyses with transmission dynamic models incorporating direct and indirect vaccinal effects ("herd-immunity") to assess potential impact on herd level disease control. The analysis shows a relative risk of infection of 0.75 (95% CI: 0.68, 0.82) in 1,902 vaccinates as compared with 1,667 controls, corresponding to a direct vaccine efficacy of 25% (95% CI: 18, 32). Importantly, scenario analyses considering both direct and indirect effects suggest that disease prevalence could be driven down close to Officially TB-Free (OTF) status (<0.1%), if BCG were introduced in the next 10-year time period in low to moderate (<15%) prevalence settings, and that 50-95% of cumulative cases may be averted over the next 50 years even in high (20-40%) disease burden settings with immediate implementation of BCG vaccination. Taken together, the analyses suggest that BCG vaccination may help accelerate control of bTB in endemic settings, particularly with early implementation in the face of dairy intensification in regions that currently lack effective bTB control programs.

4.
Sci Rep ; 9(1): 17573, 2019 11 26.
Article in English | MEDLINE | ID: mdl-31772281

ABSTRACT

Considerable effort has been directed toward controlling Johne's disease (JD), a chronic granulomatous intestinal inflammatory disease caused by Mycobacterium avium subsp. paratuberculosis (MAP) in cattle and other ruminants. However, progress in controlling the spread of MAP infection has been impeded by the lack of reliable diagnostic tests that can identify animals early in the infection process and help break the transmission chain. To identify reliable antigens for early diagnosis of MAP infection, we constructed a MAP protein array with 868 purified recombinant MAP proteins, and screened a total of 180 well-characterized serum samples from cows assigned to 4 groups based on previous serological and fecal test results: negative low exposure (NL, n = 30); negative high exposure (NH, n = 30); fecal-positive, ELISA-negative (F + E-, n = 60); and both fecal- and ELISA-positive (F + E+, n = 60). The analyses identified a total of 49 candidate antigens in the NH, F + E-, and F + E+ with reactivity compared with the NL group (p < 0.01), a majority of which have not been previously identified. While some of the antigens were identified as reactive in only one of the groups, others showed reactivity in multiple groups, including NH (n = 28), F + E- (n = 26), and F + E+ (n = 17) groups. Using combinations of top reactive antigens in each group, the results reveal sensitivities of 60.0%, 73.3%, and 81.7% in the NH, F + E-, and F + E+, respectively at 90% specificity, suggesting that early detection of infection in animals may be possible and enable better opportunities to reduce within herd transmission that may be otherwise missed by traditional serological assays that are biased towards more heavily infected animals. Together, the results suggest that several of the novel candidate antigens identified in this study, particularly those that were reactive in the NH and F + E- groups, have potential utility for the early sero-diagnosis of MAP infection.


Subject(s)
Antigens, Bacterial/immunology , Bacterial Proteins/immunology , Cattle Diseases/diagnosis , Mycobacterium avium subsp. paratuberculosis/immunology , Paratuberculosis/diagnosis , Protein Array Analysis/veterinary , Animals , Cattle , Cattle Diseases/immunology , Early Diagnosis , Enzyme-Linked Immunosorbent Assay , Paratuberculosis/immunology , Serologic Tests/methods , Serologic Tests/veterinary
5.
Sci Adv ; 5(7): eaax4899, 2019 07.
Article in English | MEDLINE | ID: mdl-31328169

ABSTRACT

Bovine tuberculosis (bTB) is a major zoonotic disease of cattle that is endemic in much of the world, limiting livestock productivity and representing a global public health threat. Because the standard tuberculin skin test precludes implementation of Bacille Calmette-Guérin (BCG) vaccine-based control programs, we here developed and evaluated a novel peptide-based defined antigen skin test (DST) to diagnose bTB and to differentiate infected from vaccinated animals (DIVA). The results, in laboratory assays and in experimentally or naturally infected animals, demonstrate that the peptide-based DST provides DIVA capability and equal or superior performance over the extant standard tuberculin surveillance test. Together with the ease of chemical synthesis, quality control, and lower burden for regulatory approval compared with recombinant antigens, the results of our studies show that the DST considerably improves a century-old standard and enables the development and implementation of critically needed surveillance and vaccination programs to accelerate bTB control.


Subject(s)
Antigens, Bacterial/immunology , Cattle/microbiology , Skin Tests , Tuberculosis, Bovine/diagnosis , Tuberculosis, Bovine/immunology , Animals , Interferon-gamma/metabolism , Peptides/immunology , Tuberculin Test
6.
Transbound Emerg Dis ; 65(6): 1627-1640, 2018 Dec.
Article in English | MEDLINE | ID: mdl-29885021

ABSTRACT

Bovine tuberculosis (bTB) is a chronic disease of cattle that impacts productivity and represents a major public health threat. Despite the considerable economic costs and zoonotic risk consequences associated with the disease, accurate estimates of bTB prevalence are lacking in many countries, including India, where national control programmes are not yet implemented and the disease is considered endemic. To address this critical knowledge gap, we performed a systematic review of the literature and a meta-analysis to estimate bTB prevalence in cattle in India and provide a foundation for the future formulation of rational disease control strategies and the accurate assessment of economic and health impact risks. The literature search was performed in accordance with PRISMA guidelines and identified 285 cross-sectional studies on bTB in cattle in India across four electronic databases and handpicked publications. Of these, 44 articles were included, contributing a total of 82,419 cows and buffaloes across 18 states and one union territory in India. Based on a random-effects (RE) meta-regression model, the analysis revealed a pooled prevalence estimate of 7.3% (95% CI: 5.6, 9.5), indicating that there may be an estimated 21.8 million (95% CI: 16.6, 28.4) infected cattle in India-a population greater than the total number of dairy cows in the United States. The analyses further suggest that production system, species, breed, study location, diagnostic technique, sample size and study period are likely moderators of bTB prevalence in India and need to be considered when developing future disease surveillance and control programmes. Taken together with the projected increase in intensification of dairy production and the subsequent increase in the likelihood of zoonotic transmission, the results of our study suggest that attempts to eliminate tuberculosis from humans will require simultaneous consideration of bTB control in cattle population in countries such as India.


Subject(s)
Tuberculosis, Bovine/epidemiology , Animals , Breeding , Buffaloes , Cattle , Cross-Sectional Studies , Female , Humans , India/epidemiology , Prevalence , Public Health
SELECTION OF CITATIONS
SEARCH DETAIL
...