Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Br J Pharmacol ; 167(6): 1232-43, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22646516

ABSTRACT

BACKGROUND AND PURPOSE: Fenamate analogues, econazole and 2-aminoethoxydiphenyl borate (2-APB) are inhibitors of transient receptor potential melastatin 2 (TRPM2) channels and are used as research tools. However, these compounds have different chemical structures and therapeutic applications. Here we have investigated the pharmacological profile of TRPM2 channels by application of newly synthesized fenamate analogues and the existing channel blockers. EXPERIMENTAL APPROACH: Human TRPM2 channels in tetracycline-regulated pcDNA4/TO vectors were transfected into HEK293 T-REx cells and the expression was induced by tetracycline. Whole cell currents were recorded by patch-clamp techniques. Ca(2+) influx or release was monitored by fluorometry. KEY RESULTS: Flufenamic acid (FFA), mefenamic acid (MFA) and niflumic acid (NFA) concentration-dependently inhibited TRPM2 current with potency order FFA > MFA = NFA. Modification of the 2-phenylamino ring by substitution of the trifluoromethyl group in FFA with -CH(3), -F, -CF(3), -OCH(3), -OCH(2)CH(3), -COOH, and -NO(2) at various positions, reduced channel blocking potency. The conservative substitution of 3-CF(3) in FFA by -CH(3) (3-MFA), however, gave the most potent fenamate analogue with an IC(50) of 76 µM, comparable to that of FFA, but unlike FFA, had no effect on Ca(2+) release. 3-MFA and FFA inhibited the channel intracellularly. Econazole and 2-APB showed non-selectivity by altering cytosolic Ca(2+) movement. Econazole also evoked a non-selective current. CONCLUSION AND IMPLICATIONS: The fenamate analogue 3-MFA was more selective than other TRPM2 channel blockers. FFA, 2-APB and econazole should be used with caution as TRPM2 channel blockers, as these compounds can interfere with intracellular Ca(2+) movement.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Boron Compounds/pharmacology , Econazole/pharmacology , Fenamates/pharmacology , TRPM Cation Channels/antagonists & inhibitors , Calcium/physiology , HEK293 Cells , Humans
2.
Biochem Pharmacol ; 83(7): 923-31, 2012 Apr 01.
Article in English | MEDLINE | ID: mdl-22285229

ABSTRACT

Non-steroidal anti-inflammatory drugs (NSAIDs) are widely used anti-inflammatory therapeutic agents, among which the fenamate analogues play important roles in regulating intracellular Ca²âº transient and ion channels. However, the effect of NSAIDs on TRPC4 and TRPC5 is still unknown. To understand the structure-activity of fenamate analogues on TRPC channels, we have synthesized a series of fenamate analogues and investigated their effects on TRPC4 and TRPC5 channels. Human TRPC4 and TRPC5 cDNAs in tetracycline-regulated vectors were transfected into HEK293 T-REx cells. The whole cell current and Ca²âº movement were recorded by patch clamp and calcium imaging, respectively. Flufenamic acid (FFA), mefenamic acid (MFA), niflumic acid (NFA) and diclofenac sodium (DFS) showed inhibition on TRPC4 and TRPC5 channels in a concentration-dependent manner. The potency was FFA>MFA>NFA>DFS. Modification of 2-phenylamino ring by substitution of the trifluoromethyl group in FFA with F, CH3, OCH3, OCH2CH3, COOH, and NO2 led to the changes in their channel blocking activity. However, 2-(2'-methoxy-5'-methylphenyl)aminobenzoic acid stimulated TRPC4 and TRPC5 channels. Selective COX1-3 inhibitors (aspirin, celecoxib, acetaminophen, and indomethacin) had no effect on the channels. Longer perfusion (> 5 min) with FFA (100 µM) and MFA (100 µM) caused a potentiation of TRPC4 and TRPC5 currents after their initial blocking effects that appeared to be partially mediated by the mitochondrial Ca²âº release. Our results suggest that fenamate analogues are direct modulators of TRPC4 and TRPC5 channels. The substitution pattern and conformation of the 2-phenylamino ring could alter their blocking activity, which is important for understanding fenamate pharmacology and new drug development targeting the TRPC channels.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Calcium/metabolism , Fenamates/pharmacology , TRPC Cation Channels/antagonists & inhibitors , Animals , Anti-Inflammatory Agents, Non-Steroidal/chemical synthesis , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Cell Culture Techniques , Fenamates/chemical synthesis , Fenamates/chemistry , Fluorescent Dyes/chemistry , Fura-2/analogs & derivatives , Fura-2/chemistry , HEK293 Cells , Humans , Male , Microscopy, Fluorescence , Mitochondria/drug effects , Mitochondria/metabolism , Muscle, Smooth, Vascular/cytology , Patch-Clamp Techniques , Rats , Structure-Activity Relationship , TRPC Cation Channels/genetics , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL
...