Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 16(1): 1082-1095, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38148284

ABSTRACT

In this work, we present a methodology to create an effective novel double-sided symmetric architecture of solid-state electrochromic devices. This principally new nonconventional configuration provides access to novel electrochromic systems that could be applicable for the creation of smart double-side signage, smart boards, nonemissive displays, and other smart interactive devices that change their color upon application of a voltage. The proposed configuration is based on the assembly of two identical electrochromic materials facing each other through an opaque optical separator. As a proof of concept, we use an electrochromic material based on bis(4'-(pyridin-4-yl)-2,2':6',2″-terpyridine) iron complex, covalently immobilized on screen-printed surface-extended ITO support. The symmetric configuration allows for a drastic enhancement of the overall stability of the device due to both attenuation of the counter electrode polarization and minimization of electrolyte decomposition. A nontransparent ion-permeable separator, in turn, allows observing the color change of only one of the electrodes by cutting off the optical contribution of the electrode located behind it. Further functionalization of the electrochromic material with a thin layer of Nafion is a beneficial strategy to significantly boost up long-term durability of the devices. Applying a layer of Nafion to the electrochromic material results in an increase in ionic conductivity within the device and ensures better retention of electrochromic molecules on the surface, thus minimizing device decomposition during long-term electrochemical cycling. An electrochromic device that bears Nafion-functionalized electrodes can operate (i) in the dual-side mode, where both sides demonstrate effective electrochromic performance; or (ii) in a one-side manner, where only one side of the device changes color. Notably, when operating in the one-side mode, the device withstands 70,000 cycles, after which the performance of the device can be resumed by simply turning the device to the other side (via switching the polarity of the electrodes).

2.
ACS Appl Mater Interfaces ; 13(33): 39573-39583, 2021 Aug 25.
Article in English | MEDLINE | ID: mdl-34378920

ABSTRACT

We report here on the strategy for the preparation of a series of electrochromic (EC) materials in green shades designed for camouflage purposes. This top-down post-synthetic modification provides access to new EC materials by fine modulation of the color of the surface-confined metalorganic monolayer pre-deposited on indium tin oxide screen-printed supports. Selective on-surface N-quaternization of the outer pyridine unit of the EC metal complex covalently embedded onto an enhanced surface area electrode results in a bathochromic shift of the absorbance signal as well as visual color change from blue to different shades of green. When assembled into solid-state EC devices (ECDs), the materials demonstrate high color differences between colored and bleached states and significant differences in optical density. Upon electrochemical switching, the ECDs initially featuring different shades of green become yellowish or clay. The accessible gamut of colors, fulfilling the requirements for chameleon-like camouflage materials, is able to mimic conditions of various natural environments including forests and sands. Notably, ECDs demonstrate high long-term durability (95% retention of the performance after 3300 cycles), fast coloration (0.6-1.1 s), and bleaching (1.2-3.3 s) times and outstanding coloration efficiencies of 1018-1513 cm2/C. Importantly, post-synthetic N-quaternization/color tuning does not deteriorate the performance of the resulting EC materials and devices as judged by cyclic voltammetry, spectroelectrochemistry, and electrochemical impedance spectroscopy. This work adds to the limited number of reports that explore color tuning of EC molecular layers via on-surface modification with the aim to access new non-symmetric materials. Notably, the facile and straightforward technology presented here allows the creation of green-colored EC materials that are difficult to prepare in other ways.

3.
RSC Adv ; 11(45): 27925-27936, 2021 Aug 16.
Article in English | MEDLINE | ID: mdl-35480766

ABSTRACT

Electrochemical impedance spectroscopy (EIS) is a highly applicable electrochemical, analytical, and non-invasive technique for materials characterization, which allows the user to evaluate the impact, efficiency, and magnitude of different components within an electrical circuit at a higher resolution than other common electrochemical techniques such as cyclic voltammetry (CV) or chronoamperometry. EIS can be used to study mechanisms of surface reactions, evaluate kinetics and mass transport, and study the level of corrosion on conductive materials, just to name a few. Therefore, this review demonstrates the scope of physical properties of the materials that can be studied using EIS, such as for characterization of supercapacitors, dye-sensitized solar cells (DSSCs), conductive coatings, sensors, self-assembled monolayers (SAMs), and other materials. This guide was created to support beginner and intermediate level researchers in EIS studies to inspire a wider application of this technique for materials characterization. In this work, we provide a summary of the essential background theory of EIS, including experimental design, signal responses, and instrumentation. Then, we discuss the main graphical representations for EIS data, including a scope of the foundation principles of Nyquist, Bode phase angle, Bode magnitude, capacitance and Randles plots, followed by detailed step-by-step explanations of the corresponding calculations that evolve from these graphs and direct examples from the literature highlighting practical applications of EIS for characterization of different types of materials. In addition, we discuss various applications of EIS technique for materials research.

4.
ACS Appl Mater Interfaces ; 12(37): 41749-41757, 2020 Sep 16.
Article in English | MEDLINE | ID: mdl-32870639

ABSTRACT

The article describes novel electrochromic materials (ECMs) that are based on a monolayer consisting of two or three isostructural metal complexes of 4'-(pyridin-4-yl)-2,2':6',2''-terpyridine simultaneously deposited on surface-enhanced support. The support was made by screen printing of indium tin oxide (ITO) nanoparticles on ITO-glass and has a surface area sufficient for a monolayer to give color visible to the naked eye. The ability to separately electrochemically address the oxidation state of the metal centers on the surface (i.e., Co2+/Co3+, Os2+/Os3+, and Fe2+/Fe3+) provides an opportunity to achieve several distinct color-to-color transitions, thus opening the door for constructing monolayer-based multicolor ECMs.

5.
ACS Appl Mater Interfaces ; 10(41): 35334-35343, 2018 Oct 17.
Article in English | MEDLINE | ID: mdl-30230313

ABSTRACT

In this study, we present a range of efficient highly durable electrochromic materials that demonstrate excellent redox and lifetime stability, sufficient coloration contrast ratios, and the best-in-class electron-transfer constants. The materials were formed by anchoring as little as a monolayer of predefined iron complexes on a surface-enhanced conductive solid support. The thickness of the substrate was optimized to maximize the change in optical density. We demonstrate that even a slight change in molecular sterics and electronics results in materials with sufficiently different properties. Thus, minor changes in the ligand design give access to materials with a wide range of color variations, including green, purple, and brown. Moreover, ligand architecture dictates either orthogonal or parallel alignment of corresponding metal complexes on the surface due to mono- or bis-quaternization. We demonstrate that monoquaternization of the complexes during anchoring to the surface-bound template layer results in redshifts of the photoabsorption peak. The results of in-solution bis-methylation supported by density functional theory calculations show that the second quaternization may lead to an opposite blueshift (in comparison with monomethylated analogs), depending on the ligand electronics and the environmental change. It is shown that the variations of the photoabsorption peak position for different ligands upon attachment to the surface can be related to the calculated charge distribution and excitation-induced redistribution. Overall, the work demonstrates a well-defined method of electrochromic material color tuning via manipulation of sterics and electronics of terpyridine-based ligands.

6.
ACS Appl Mater Interfaces ; 9(46): 40438-40445, 2017 Nov 22.
Article in English | MEDLINE | ID: mdl-29076345

ABSTRACT

Novel electrochromic (EC) materials were developed and formed by a two-step chemical deposition process. First, a self-assembled monolayer (SAM) of 2,2':6',2″-terpyridin-4'-ylphosphonic acid, L, was deposited on the surface of a nanostructured conductive indium-tin oxide (ITO) screen-printed support by simple submerging of the support into an aqueous solution of L. Further reaction of the SAM with Fe or Ru ions results in the formation of a monolayer of the redox-active metal complex covalently bound to the ITO support (Fe-L/ITO and Ru-L/ITO, respectively). These novel light-reflective EC materials demonstrate a high color difference, significant durability, and fast switching speed. The Fe-based material shows an excellent change of optical density and coloration efficiency. The results of thermogravimetric analysis suggest high thermal stability of the materials. Indeed, the EC characteristics do not change significantly after heating of Fe-L/ITO at 100 °C for 1 week, confirming the excellent stability and high EC reversibility. The proposed fabrication approach that utilizes interparticle porosity of the support and requires as low as a monolayer of EC active molecule benefits from the significant molecular economy when compared with traditional polymer-based EC devices and is significantly less time-consuming than layer-by-layer growth of coordination-based molecular assemblies.

SELECTION OF CITATIONS
SEARCH DETAIL
...