Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Ecol Evol ; 14(5): e11254, 2024 May.
Article in English | MEDLINE | ID: mdl-38746545

ABSTRACT

Numerous genomic methods developed over the past two decades have enabled the discovery and extraction of orthologous loci to help resolve phylogenetic relationships across various taxa and scales. Genome skimming (or low-coverage genome sequencing) is a promising method to not only extract high-copy loci but also 100s to 1000s of phylogenetically informative nuclear loci (e.g., ultraconserved elements [UCEs] and exons) from contemporary and museum samples. The subphylum Anthozoa, including important ecosystem engineers (e.g., stony corals, black corals, anemones, and octocorals) in the marine environment, is in critical need of phylogenetic resolution and thus might benefit from a genome-skimming approach. We conducted genome skimming on 242 anthozoan corals collected from 1886 to 2022. Using existing target-capture baitsets, we bioinformatically obtained UCEs and exons from the genome-skimming data and incorporated them with data from previously published target-capture studies. The mean number of UCE and exon loci extracted from the genome skimming data was 1837 ± 662 SD for octocorals and 1379 ± 476 SD loci for hexacorals. Phylogenetic relationships were well resolved within each class. A mean of 1422 ± 720 loci was obtained from the historical specimens, with 1253 loci recovered from the oldest specimen collected in 1886. We also obtained partial to whole mitogenomes and nuclear rRNA genes from >95% of samples. Bioinformatically pulling UCEs, exons, mitochondrial genomes, and nuclear rRNA genes from genome skimming data is a viable and low-cost option for phylogenetic studies. This approach can be used to review and support taxonomic revisions and reconstruct evolutionary histories, including historical museum and type specimens.

2.
J Fish Biol ; 100(3): 835-842, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34931706

ABSTRACT

We report new records of the fisheries-harvested subtropical greater amberjack Seriola dumerili for the south-east Pacific Ocean. Despite local fishers' asserting that three Seriola morphotypes exist in the region, only one species (the yellowtail amberjack Seriola lalandi) was previously scientifically recorded for Rapa Nui (also known as Easter Island). Whilst we present the first "scientific record", S. dumerili, traditional ecological knowledge suggests that this is likely a pre-existing (albeit transient) species of the Rapa Nui ecoregion. Establishing the existing/historic distributional limits of commercially and ecologically valuable species is key for observing climate-driven distribution shifts, and the inclusion of traditional ecological knowledge is particularly important in areas with relatively lower scientific effort.


Subject(s)
Perciformes , Animals , Antarctic Regions , Fisheries , Fishes , Polynesia
3.
Mitochondrial DNA B Resour ; 6(11): 3226-3228, 2021.
Article in English | MEDLINE | ID: mdl-34676296

ABSTRACT

We report the complete mitochondrial genomes of two antipatharian species, Stichopathes sp. SCBUCN-8849 and Stichopathes sp. SCBUCN-8850, collected between 120 and 180 m depth off Rapa Nui (∼ -27.1°, -109.4°). The size of the two mitogenomes are 20,389 bp (29.0% A, 15.2% C, 19.9% G, and 35.9% T) and 20,463 bp (29.0% A, 15.3% C, 19.9% G, and 35.8% T), respectively. Both mitogenomes have the classic Hexacorallia gene content of 13 protein-coding, two rRNA, and two tRNA genes plus a COX1 intron with embedded HEG as found in the Antipathidae and other antipatharian families.

4.
PLoS One ; 16(6): e0253213, 2021.
Article in English | MEDLINE | ID: mdl-34191822

ABSTRACT

The Salas y Gómez and Nazca ridges are underwater mountain chains that stretch across 2,900 km in the southeastern Pacific and are recognized for their high biodiversity value and unique ecological characteristics. Explorations of deep-water ecosystems have been limited in this region, and elsewhere globally. To characterize community composition of mesophotic and deep-sea demersal fauna at seamounts in the region, we conducted expeditions to Rapa Nui (RN) and Salas y Gómez (SyG) islands in 2011 and Desventuradas Islands in 2013. Remote autonomous baited-cameras were used to conduct stationary video surveys between 150-1,850 m at RN/SyG (N = 20) and 75-2,363 m at Desventuradas (N = 27). Individual organisms were identified to the lowest possible taxonomic level and relative abundance was quantified with the maximum number of individuals per frame. Deployments were attributed with associated environmental variables (temperature, salinity, dissolved oxygen, nitrate, silicate, phosphate, chlorophyll-a, seamount age, and bathymetric position index [BPI]). We identified 55 unique invertebrate taxa and 66 unique fish taxa. Faunal community structure was highly dissimilar between and within subregions both for invertebrate (p < 0.001) and fish taxa (p = 0.022). For fishes, dogfish sharks (Squalidae) accounted for the greatest dissimilarity between subregions (18.27%), with mean abundances of 2.26 ± 2.49 at Desventuradas, an order of magnitude greater than at RN/SyG (0.21 ± 0.54). Depth, seamount age, broad-scale BPI, and nitrate explained most of the variation in both invertebrate (R2 = 0.475) and fish (R2 = 0.419) assemblages. Slightly more than half the deployments at Desventuradas (N = 14) recorded vulnerable marine ecosystem taxa such as corals and sponges. Our study supports mounting evidence that the Salas y Gómez and Nazca ridges are areas of high biodiversity and high conservation value. While Chile and Peru have recently established or proposed marine protected areas in this region, the majority of these ridges lie outside of national jurisdictions and are under threat from overfishing, plastic pollution, climate change, and potential deep-sea mining. Given its intrinsic value, this region should be comprehensively protected using the best available conservation measures to ensure that the Salas y Gómez and Nazca ridges remain a globally unique biodiversity hotspot.


Subject(s)
Biodiversity , Conservation of Natural Resources , Fishes/physiology , Invertebrates/physiology , Animal Distribution , Animals , Chile , Ecological Parameter Monitoring/methods , Islands , Pacific Ocean , Peru , Video Recording
5.
Sci Rep ; 11(1): 6209, 2021 03 18.
Article in English | MEDLINE | ID: mdl-33737562

ABSTRACT

Seamounts and oceanic islands of the Chilean Exclusive Economic Zone at the intersection of the Nazca and Salas y Gómez ridges lie within one of the least explored areas in the world. The sparse information available, mainly for seamounts outside Chilean jurisdiction and shallow-water fauna of the Desventuradas Islands, suggests that the area is a hotspot of endemism. This apparent uniqueness of the fauna motivated the creation of the large Nazca-Desventuradas Marine Park (NDMP, ~ 300,000 km2) around the small islands San Felix and San Ambrosio in 2015. We report for the first time a detailed description of benthic microhabitats (i.e., centimeter to meter scale), macrohabitats (i.e., meter to kilometer-scale) and associated megafauna within the NDMP. Descriptions were based on analysis of fauna collected by trawling and ROV video observations from ~ 50 to 370 m depth. Rocky, coarse sand and silty sediment bottom habitats were observed at island slopes. In contrast, rocky and coarse sandy bottom habitats with a predominance of rhodoliths, thanatocoenosis, and other biogenic components were observed at seamounts. Mobile fauna and predators dominated the oceanic islands and nearby seamounts, whereas seamounts farther from the islands were dominated by sessile and hemisessile fauna that were mainly suspension and deposit feeders. Based on the register of 118 taxonomic units, our results provide an expanded and updated baseline for the benthic biodiversity of NDMP habitats, which seemed pristine, without evidence of trawling or anthropogenic debris.

6.
Mitochondrial DNA B Resour ; 5(2): 1826-1827, 2020.
Article in English | MEDLINE | ID: mdl-33102739

ABSTRACT

We report the first complete Stoloniferamitochondrial genome.Carijoa riisei(Duchassaing&Michelotti, 1860) isolate CLP2_A03was collected by scuba at 32 m on the USTS Texas Clipper (27° 53.7827' N, 93° 36.2702' W). The complete mitogenome has the ancestral octocoral gene order for its 14 protein-coding genes, two rRNA genes, and one tRNA gene. It is 18,714 bp (30.7% A, 15.8% C, 18.8% G, and 34.7% T). Of the Alcyonacea mitogenomes published to date, it is most genetically similar (94% uncorrected) to Sinularia ceramensisVerseveldt, 1977 (NC_044122).

7.
Gene ; 538(1): 123-37, 2014 Mar 15.
Article in English | MEDLINE | ID: mdl-24389499

ABSTRACT

Members of subclass Copepoda are abundant, diverse, and-as a result of their variety of ecological roles in marine and freshwater environments-important, but their phylogenetic interrelationships are unclear. Recent studies of arthropods have used gene arrangements in the mitochondrial (mt) genome to infer phylogenies, but for copepods, only seven complete mt genomes have been published. These data revealed several within-order and few among-order similarities. To increase the data available for comparisons, we sequenced the complete mt genome (13,831base pairs) of Amphiascoides atopus and 10,649base pairs of the mt genome of Schizopera knabeni (both in the family Miraciidae of the order Harpacticoida). Comparison of our data to those for Tigriopus japonicus (family Harpacticidae, order Harpacticoida) revealed similarities in gene arrangement among these three species that were consistent with those found within and among families of other copepod orders. Comparison of the mt genomes of our species with those known from other copepod orders revealed the arrangement of mt genes of our Harpacticoida species to be more similar to that of Sinergasilus polycolpus (order Poecilostomatoida) than to that of T. japonicus. The similarities between S. polycolpus and our species are the first to be noted across the boundaries of copepod orders and support the possibility that mt-gene arrangement might be used to infer copepod phylogenies. We also found that our two species had extremely truncated transfer RNAs and that gene overlaps occurred much more frequently than has been reported for other copepod mt genomes.


Subject(s)
Copepoda/genetics , Genome, Mitochondrial , Animals , Base Sequence , Copepoda/classification , Molecular Sequence Data , Phylogeny , RNA, Ribosomal/genetics , RNA, Transfer/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...