Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Manage ; 308: 114649, 2022 Apr 15.
Article in English | MEDLINE | ID: mdl-35144063

ABSTRACT

The ability to identify, target, and treat critical pollution source areas on a landscape is an ongoing challenge for water quality programs that seek to address nonpoint source (NPS) pollution. In this article, we develop a conceptual framework for targeting program design, and review recent experience with the implementation of targeting programs that corresponds with a wide range of program characteristics. Through this review, we emphasize that the complex and locally dependent nature of NPS generation and transport makes it impossible to define a narrow set of rules to guide targeting programs everywhere. Instead, we evaluate key features of NPS targeting in several different contexts, highlighting lessons learned from recent experience. This synthesis of targeting program design and implementation points toward several areas of opportunity for improved NPS policy, however more research is needed to systematically document changes in behavior and pollutant loads. The lack of monitoring data at refined scales presents a major obstacle to targeting program success. This paper synthesizes new opportunities and ongoing challenges for the implementation of targeting in NPS water quality programs.


Subject(s)
Environmental Pollutants , Non-Point Source Pollution , Environmental Monitoring , Policy , Water Pollution/prevention & control , Water Quality
2.
Transl Anim Sci ; 5(2): txab010, 2021 Apr.
Article in English | MEDLINE | ID: mdl-34041440

ABSTRACT

Precision technologies for confinement animal agricultural systems have increased rapidly over the past decade, though precision technology solutions for pastured livestock remain limited. There are a number of reasons for this limited expansion of technologies for pastured animals, including networking availability and reliability, power requirements, and expense, among others. The objective of this work was to demonstrate a rapidly deployable long-range radio (LoRa) based, low-cost sensor suite that can be used to track location and activity of pastured livestock. The sensor is comprised of an inexpensive Arduino-compatible microprocessor, a generic MPU-9250 motion sensor which contains a 3-axis accelerometer, 3-axis magnetometer, and a 3-axis gyroscope, a generic GPS receiver, and a RFM95W generic LoRa radio. The microprocessor can be programmed flexibly using the open source Arduino IDE software to adjust the frequency of sampling, the data packet to send, and what conditions are needed to operate. The LoRa radio transmits to a Dragino LoRa gateway which can also be flexibly programmed through the Arduino IDE software to send data to local storage or, in cases where a web or cellular connection is available, to cloud storage. The sensor was powered using a USB cord connected to a 3,350 mAh lithium-ion battery pack. The Dragino gateway was programmed to upload data to the ThingSpeak IoT application programming interface for data storage, handling, and visualization. Evaluations showed minimal benefit associated with reducing sampling frequency as a strategy to preserve battery life. Packet loss ranged from 40% to 60%. In a 3 d evaluation on pastured sheep, the sensor suite was able to report GPS locations, inertial sensor readings, and temperature. Preliminary demonstrations of our system are satisfactory to detect animal location based on GPS data in real-time. This system has clear utility as a lower-cost strategy to deploy flexible, useful precision technologies for pasture-based livestock species.

3.
J Environ Qual ; 46(6): 1243-1249, 2017 Nov.
Article in English | MEDLINE | ID: mdl-29293848

ABSTRACT

Over the past 20 yr, there has been a proliferation of phosphorus (P) site assessment tools for nutrient management planning, particularly in the United States. The 19 papers that make up this special section on P site assessment include decision support tools ranging from the P Index to fate-and-transport models to weather-forecast-based risk calculators. All require objective evaluation to ensure that they are effective in achieving intended benefits to protecting water quality. In the United States, efforts have been underway to compare, evaluate, and advance an array of P site assessment tools. Efforts to corroborate their performance using water quality monitoring data confirms previously documented discrepancies between different P site assessment tools but also highlights a surprisingly strong performance of many versions of the P Index as a predictor of water quality. At the same time, fate-and-transport models, often considered to be superior in their prediction of hydrology and water quality due to their complexity, reveal limitations when applied to site assessment. Indeed, one consistent theme from recent experience is the need to calibrate highly parameterized models. As P site assessment evolves, so too do routines representing important aspects of P cycling and transport. New classes of P site assessment tools are an opportunity to move P site assessment from general, strategic goals to web-based tools supporting daily, operational decisions.


Subject(s)
Phosphorus/analysis , Water Quality , Water Movements , Water Pollutants/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...