Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Res ; 83(15): 2584-2599, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37249603

ABSTRACT

Transposable elements (TE) are typically silenced by DNA methylation and repressive histone modifications in differentiated healthy human tissues. However, TE expression increases in a wide range of cancers and is correlated with global hypomethylation of cancer genomes. We assessed expression and DNA methylation of TEs in fibroblast cells that were serially transduced with hTERT, SV40, and HRASR24C to immortalize and then transform them, modeling the different steps of the tumorigenesis process. RNA sequencing and whole-genome bisulfite sequencing were performed at each stage of transformation. TE expression significantly increased as cells progressed through transformation, with the largest increase in expression after the final stage of transformation, consistent with data from human tumors. The upregulated TEs were dominated by endogenous retroviruses [long terminal repeats (LTR)]. Most differentially methylated regions (DMR) in all stages were hypomethylated, with the greatest hypomethylation in the final stage of transformation. A majority of the DMRs overlapped TEs from the RepeatMasker database, indicating that TEs are preferentially demethylated. Many hypomethylated TEs displayed a concordant increase in expression. Demethylation began during immortalization and continued into transformation, while upregulation of TE transcription occurred in transformation. Numerous LTR elements upregulated in the model were also identified in The Cancer Genome Atlas datasets of breast, colon, and prostate cancer. Overall, these findings indicate that TEs, specifically endogenous retroviruses, are demethylated and transcribed during transformation. SIGNIFICANCE: Analysis of epigenetic and transcriptional changes in a transformation model reveals that transposable element expression and methylation are dysregulated during oncogenic transformation.


Subject(s)
DNA Methylation , Neoplasms , Humans , DNA Transposable Elements/genetics , Transcriptional Activation , Sequence Analysis, RNA , Neoplasms/genetics
2.
Cancer Res ; 68(19): 8094-103, 2008 Oct 01.
Article in English | MEDLINE | ID: mdl-18829568

ABSTRACT

Much recent effort has focused on identifying and characterizing cellular markers that distinguish tumor propagating cells (TPC) from more differentiated progeny. We report here an unusual promoter DNA methylation pattern for one such marker, the cell surface antigen CD133 (Prominin 1). This protein has been extensively used to enrich putative cancer propagating stem-like cell populations in epithelial tumors and, especially, glioblastomas. We find that, within individual cell lines of cultured colon cancers and glioblastomas, the promoter CpG island of CD133 is DNA methylated, primarily, in cells with absent or low expression of the marker protein, whereas lack of such methylation is evident in purely CD133+ cells. Differential histone modification marks of active versus repressed genes accompany these DNA methylation changes. This heterogeneous CpG island DNA methylation status in the tumors is unusual in that other DNA hypermethylated genes tested in such cultures preserve their methylation patterns between separated CD133+ and CD133- cell populations. Furthermore, the CD133 DNA methylation seems to constitute an abnormal promoter signature because it is not found in normal brain and colon but only in cultured and primary tumors. Thus, the DNA methylation is imposed on the transition between the active versus repressed transcription state for CD133 only in tumors. Our findings provide additional insight for the dynamics of aberrant DNA methylation associated with aberrant gene silencing in human tumors.


Subject(s)
Antigens, CD/genetics , Brain Neoplasms/genetics , Carcinoma/genetics , Colorectal Neoplasms/genetics , DNA Methylation , Glioblastoma/genetics , Glycoproteins/genetics , Peptides/genetics , AC133 Antigen , Animals , Antigens, CD/metabolism , Antineoplastic Agents/therapeutic use , Azacitidine/analogs & derivatives , Azacitidine/therapeutic use , Brain Neoplasms/drug therapy , Brain Neoplasms/metabolism , Caco-2 Cells , Carcinoma/drug therapy , Carcinoma/metabolism , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/metabolism , DNA (Cytosine-5-)-Methyltransferases/antagonists & inhibitors , DNA (Cytosine-5-)-Methyltransferases/genetics , DNA Methylation/drug effects , Decitabine , Female , Gene Deletion , Gene Expression Regulation, Neoplastic , Glioblastoma/drug therapy , Glioblastoma/metabolism , Glycoproteins/metabolism , HCT116 Cells , HT29 Cells , Humans , Mice , Mice, Nude , Peptides/metabolism , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...