Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Vis Exp ; (135)2018 05 04.
Article in English | MEDLINE | ID: mdl-29781996

ABSTRACT

Pseudomonas aeruginosa is a phenotypically and genotypically diverse and adaptable Gram-negative bacterium ubiquitous in human environments. P. aeruginosa is able to form biofilms, develop antibiotic resistance, produce virulence factors, and rapidly evolve in the course of a chronic infection. Thus P. aeruginosa can cause both acute and chronic, difficult to treat infections, resulting in significant morbidity in certain patient populations. P. aeruginosa strain PA14 is a human clinical isolate with a conserved genome structure that infects a variety of mammalian and nonvertebrate hosts making PA14 an attractive strain for studying this pathogen. In 2006, a nonredundant transposon insertion mutant library containing 5,459 mutants corresponding to 4,596 predicted PA14 genes was generated. Since then, distribution of the PA14 library has allowed the research community to better understand the function of individual genes and complex pathways of P. aeruginosa. Maintenance of library integrity through the replication process requires proper handling and precise techniques. To that end, this manuscript presents protocols that describe in detail the steps involved in library replication, library quality control and proper storage of individual mutants.


Subject(s)
DNA Transposable Elements/genetics , Mutagenesis/genetics , Pseudomonas aeruginosa/chemistry , Animals , Humans , Mutagenesis, Insertional
2.
J Immunol ; 199(8): 2873-2884, 2017 10 15.
Article in English | MEDLINE | ID: mdl-28887431

ABSTRACT

Eicosanoids are a group of bioactive lipids that are shown to be important mediators of neutrophilic inflammation; selective targeting of their function confers therapeutic benefit in a number of diseases. Neutrophilic airway diseases, including cystic fibrosis, are characterized by excessive neutrophil infiltration into the airspace. Understanding the role of eicosanoids in this process may reveal novel therapeutic targets. The eicosanoid hepoxilin A3 is a pathogen-elicited epithelial-produced neutrophil chemoattractant that directs transepithelial migration in response to infection. Following hepoxilin A3-driven transepithelial migration, neutrophil chemotaxis is amplified through neutrophil production of a second eicosanoid, leukotriene B4 (LTB4). The rate-limiting step of eicosanoid generation is the liberation of arachidonic acid by phospholipase A2, and the cytosolic phospholipase A2 (cPLA2)α isoform has been specifically shown to direct LTB4 synthesis in certain contexts. Whether cPLA2α is directly responsible for neutrophil synthesis of LTB4 in the context of Pseudomonas aeruginosa-induced neutrophil transepithelial migration has not been explored. Human and mouse neutrophil-epithelial cocultures were used to evaluate the role of neutrophil-derived cPLA2α in infection-induced transepithelial signaling by pharmacological and genetic approaches. Primary human airway basal stem cell-derived epithelial cultures and micro-optical coherence tomography, a new imaging modality that captures two- and three-dimensional real-time dynamics of neutrophil transepithelial migration, were applied. Evidence from these studies suggests that cPLA2α expressed by neutrophils, but not epithelial cells, plays a significant role in infection-induced neutrophil transepithelial migration by mediating LTB4 synthesis during migration, which serves to amplify the magnitude of neutrophil recruitment in response to epithelial infection.


Subject(s)
Antigens, Human Platelet/metabolism , Cystic Fibrosis/immunology , Neutrophils/immunology , Pseudomonas Infections/immunology , Pseudomonas aeruginosa/immunology , Respiratory Mucosa/immunology , Transendothelial and Transepithelial Migration , 8,11,14-Eicosatrienoic Acid/analogs & derivatives , 8,11,14-Eicosatrienoic Acid/metabolism , Animals , Cell Communication , Cell Line , Chemotaxis , Coculture Techniques , Cytosol/metabolism , Humans , Leukotriene B4/metabolism , Mice , Neutrophils/microbiology , Respiratory Mucosa/microbiology , Respiratory Mucosa/pathology , Tomography, Optical Coherence
3.
Sci Rep ; 7(1): 8182, 2017 08 15.
Article in English | MEDLINE | ID: mdl-28811631

ABSTRACT

Neutrophil breach of the mucosal surface is a common pathological consequence of infection. We present an advanced co-culture model to explore neutrophil transepithelial migration utilizing airway mucosal barriers differentiated from primary human airway basal cells and examined by advanced imaging. Human airway basal cells were differentiated and cultured at air-liquid interface (ALI) on the underside of 3 µm pore-sized transwells, compatible with the study of transmigrating neutrophils. Inverted ALIs exhibit beating cilia and mucus production, consistent with conventional ALIs, as visualized by micro-optical coherence tomography (µOCT). µOCT is a recently developed imaging modality with the capacity for real time two- and three-dimensional analysis of cellular events in marked detail, including neutrophil transmigratory dynamics. Further, the newly devised and imaged primary co-culture model recapitulates key molecular mechanisms that underlie bacteria-induced neutrophil transepithelial migration previously characterized using cell line-based models. Neutrophils respond to imposed chemotactic gradients, and migrate in response to Pseudomonas aeruginosa infection of primary ALI barriers through a hepoxilin A3-directed mechanism. This primary cell-based co-culture system combined with µOCT imaging offers significant opportunity to probe, in great detail, micro-anatomical and mechanistic features of bacteria-induced neutrophil transepithelial migration and other important immunological and physiological processes at the mucosal surface.


Subject(s)
Cell Culture Techniques , Coculture Techniques , Inflammation/metabolism , Inflammation/pathology , Respiratory Mucosa/metabolism , Respiratory Mucosa/pathology , 8,11,14-Eicosatrienoic Acid/analogs & derivatives , 8,11,14-Eicosatrienoic Acid/metabolism , Cell Line , Cell Movement/immunology , Cell Polarity , Chemotaxis, Leukocyte/immunology , Epithelial Cells/metabolism , Epithelial Cells/pathology , Fluorescent Antibody Technique , Humans , Inflammation/immunology , Inflammation/microbiology , Neutrophil Infiltration/immunology , Neutrophils/immunology , Neutrophils/metabolism , Neutrophils/pathology , Respiratory Mucosa/immunology , Respiratory Mucosa/microbiology
4.
Sci Rep ; 8: 45789, 2017 04 03.
Article in English | MEDLINE | ID: mdl-28368012

ABSTRACT

A model of neutrophil migration across epithelia is desirable to interrogate the underlying mechanisms of neutrophilic breach of mucosal barriers. A co-culture system consisting of a polarized mucosal epithelium and human neutrophils can provide a versatile model of trans-epithelial migration in vitro, but observations are typically limited to quantification of migrated neutrophils by myeloperoxidase correlation, a destructive assay that precludes direct longitudinal study. Our laboratory has recently developed a new isotropic 1-µm resolution optical imaging technique termed micro-optical coherence tomography (µOCT) that enables 4D (x,y,z,t) visualization of neutrophils in the co-culture environment. By applying µOCT to the trans-epithelial migration model, we can robustly monitor the spatial distribution as well as the quantity of neutrophils chemotactically crossing the epithelial boundary over time. Here, we demonstrate the imaging and quantitative migration results of our system as applied to neutrophils migrating across intestinal epithelia in response to a chemoattractant. We also demonstrate that perturbation of a key molecular event known to be critical for effective neutrophil trans-epithelial migration (CD18 engagement) substantially impacts this process both qualitatively and quantitatively.


Subject(s)
Colorectal Neoplasms/pathology , Epithelium/physiology , Neutrophils/physiology , Peroxidase/metabolism , Tomography, Optical Coherence/methods , Transendothelial and Transepithelial Migration , Cell Adhesion , Cells, Cultured , Chemotaxis, Leukocyte/physiology , Coculture Techniques , Humans , Neutrophils/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...