Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Hum Mutat ; 43(10): 1368-1376, 2022 10.
Article in English | MEDLINE | ID: mdl-35723634

ABSTRACT

Schwannomatosis comprises a group of hereditary tumor predisposition syndromes characterized by, usually benign, multiple nerve sheath tumors, which frequently cause severe pain that does not typically respond to drug treatments. The most common schwannomatosis-associated gene is NF2, but SMARCB1 and LZTR1 are also associated. There are still many cases in which no pathogenic variants (PVs) have been identified, suggesting the existence of as yet unidentified genetic risk factors. In this study, we performed extended genetic screening of 75 unrelated schwannomatosis patients without identified germline PVs in NF2, LZTR1, or SMARCB1. Screening of the coding region of DGCR8, COQ6, CDKN2A, and CDKN2B was carried out, based on previous reports that point to these genes as potential candidate genes for schwannomatosis. Deletions or duplications in CDKN2A, CDKN2B, and adjacent chromosome 9 region were assessed by multiplex ligation-dependent probe amplification analysis. Sequencing analysis of a patient with multiple schwannomas and melanomas identified a novel duplication in the coding region of CDKN2A, disrupting both p14ARF and p16INK4a. Our results suggest that none of these genes are major contributors to schwannomatosis risk but the possibility remains that they may have a role in more complex mechanisms for tumor predisposition.


Subject(s)
Cyclin-Dependent Kinase Inhibitor p16 , Neurilemmoma , Neurofibromatoses , Skin Neoplasms , Cyclin-Dependent Kinase Inhibitor p16/genetics , Humans , Neurilemmoma/genetics , Neurilemmoma/pathology , Neurofibromatoses/genetics , RNA-Binding Proteins , SMARCB1 Protein/genetics , Skin Neoplasms/genetics , Transcription Factors/genetics
2.
Nat Med ; 25(5): 738-743, 2019 05.
Article in English | MEDLINE | ID: mdl-31011204

ABSTRACT

Next-generation sequencing (NGS) of circulating tumor DNA (ctDNA) supports blood-based genomic profiling but is not yet routinely implemented in the setting of a phase I trials clinic. TARGET is a molecular profiling program with the primary aim to match patients with a broad range of advanced cancers to early phase clinical trials on the basis of analysis of both somatic mutations and copy number alterations (CNA) across a 641 cancer-associated-gene panel in a single ctDNA assay. For the first 100 TARGET patients, ctDNA data showed good concordance with matched tumor and results were turned round within a clinically acceptable timeframe for Molecular Tumor Board (MTB) review. When a 2.5% variant allele frequency (VAF) threshold was applied, actionable mutations were identified in 41 of 100 patients, and 11 of these patients received a matched therapy. These data support the application of ctDNA in this early phase trial setting where broad genomic profiling of contemporaneous tumor material enhances patient stratification to novel therapies and provides a practical template for bringing routinely applied blood-based analyses to the clinic.


Subject(s)
Circulating Tumor DNA/blood , Circulating Tumor DNA/genetics , Biomarkers, Tumor/blood , Biomarkers, Tumor/genetics , Clinical Trials, Phase I as Topic , DNA Copy Number Variations , High-Throughput Nucleotide Sequencing , Humans , Mutation , Neoplasms/blood , Neoplasms/genetics , Neoplasms/therapy , Patient Selection , Sequence Analysis, DNA
3.
Cancer Genet ; 207(9): 373-8, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24933152

ABSTRACT

Mutations in the SMARCB1 gene are involved in several human tumor-predisposing syndromes. They were established as an underlying cause of the tumor suppressor syndrome schwannomatosis in 2008. There is a much higher rate of mutation detection in familial disease than in sporadic disease. We have performed extensive genetic testing on a cohort of familial and sporadic patients who fulfilled clinical diagnostic criteria for schwannomatosis. In our updated cohort, we identified novel mutations within the SMARCB1 gene as well as several recurrent mutations. Of the schwannomatosis screens reported to date, including those in our updated cohort, SMARCB1 mutations have been found in 45% of familial probands and 9% of sporadic patients. The exon 1 mutation, c.41C>A p.Pro14His (10% in our series), and the 3' untranslated region mutation, c.*82C>T (27%), are the most common changes reported in patients with schwannomatosis to date, indicating the presence of mutation hot spots at both 5' and 3' portions of the gene. Comparison with germline SMARCB1 mutations in patients with rhabdoid tumors showed that the schwannomatosis mutations were significantly more likely to occur at either end of the gene and be nontruncating mutations (P < 0.0001). SMARCB1 mutations are found in a significant proportion of schwannomatosis patients, and an even higher proportion of rhabdoid patients. Whereas SMARCB1 alone seems to account for rhabdoid disease, there is likely to be substantial heterogeneity in schwannomatosis even for familial disease. There is a clear genotype-phenotype correlation, with germline rhabdoid mutations being significantly more likely to be centrally placed, involve multiple exon deletions, and be truncating mutations.


Subject(s)
Chromosomal Proteins, Non-Histone/genetics , DNA-Binding Proteins/genetics , Neurilemmoma/genetics , Neurilemmoma/pathology , Neurofibromatoses/genetics , Neurofibromatoses/pathology , Neurofibromatosis 2/genetics , Rhabdoid Tumor/genetics , Skin Neoplasms/genetics , Skin Neoplasms/pathology , Transcription Factors/genetics , Chromosomal Proteins, Non-Histone/biosynthesis , DNA-Binding Proteins/biosynthesis , Genetic Association Studies , Humans , Mutation , Neurofibromin 2/genetics , Rhabdoid Tumor/pathology , SMARCB1 Protein , Transcription Factors/biosynthesis , Tumor Suppressor Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...