Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Biology (Basel) ; 8(1)2019 Feb 07.
Article in English | MEDLINE | ID: mdl-30736459

ABSTRACT

The current knowledge of sex-dependent differences in adipose tissue biology remains in its infancy and is motivated in part by the desire to understand why menopause is linked to an increased risk of metabolic disease. However, the development and characterization of targeted genetically-modified rodent models are shedding new light on the physiological actions of sex hormones in healthy reproductive metabolism. In this review we consider the need for differentially regulating metabolic flexibility, energy balance, and immunity in a sex-dependent manner. We discuss the recent advances in our understanding of physiological roles of systemic estrogen in regulating sex-dependent adipose tissue distribution, form and function; and in sex-dependent healthy immune function. We also review the decline in protective properties of estrogen signaling in pathophysiological settings such as obesity-related metaflammation and metabolic disease. It is clear that the many physiological actions of estrogen on energy balance, immunity, and immunometabolism together with its dynamic regulation in females make it an excellent candidate for regulating metabolic flexibility in the context of reproductive metabolism.

2.
Mol Metab ; 5(8): 699-708, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27656407

ABSTRACT

OBJECTIVE: Parental obesity can induce metabolic phenotypes in offspring independent of the inherited DNA sequence. Here we asked whether such non-genetic acquired metabolic traits can be passed on to a second generation that has never been exposed to obesity, even as germ cells. METHODS: We examined the F1, F2, and F3 a/a offspring derived from F0 matings of obese prediabetic A (vy) /a sires and lean a/a dams. After F0, only lean a/a mice were used for breeding. RESULTS: We found that F1 sons of obese founder males exhibited defects in glucose and lipid metabolism, but only upon a post-weaning dietary challenge. F1 males transmitted these defects to their own male progeny (F2) in the absence of the dietary challenge, but the phenotype was largely attenuated by F3. The sperm of F1 males exhibited changes in the abundance of several small RNA species, including the recently reported diet-responsive tRNA-derived fragments. CONCLUSIONS: These data indicate that induced metabolic phenotypes may be propagated for a generation beyond any direct exposure to an inducing factor. This non-genetic inheritance likely occurs via the actions of sperm noncoding RNA.

3.
Epigenetics ; 11(7): 475-81, 2016 07 02.
Article in English | MEDLINE | ID: mdl-27216962

ABSTRACT

The complex interaction between obesity, Western-style diets, and cardiovascular disease is of increasing interest, with a growing number of children being born to obese parents with poor lifestyle choices. These offspring have themselves an increased susceptibility to obesity and subsequent cardiovascular disease in adult life, which may be 'programmed' by their intrauterine environment. Cardiac microRNAs (miRNAs) are affected by multiple disease states, and have also been shown to be capable of exerting a hormone-like control on whole body metabolism. Here we sought to determine the effect of prenatal exposure to maternal obesity and/or postnatal exposure to a Western diet on miRNA expression in the heart. Unbiased small RNA sequencing was carried out on cardiac tissue from young adult mice born to lean or obese mothers; offspring were weaned onto either a low-fat control diet or a high-fat Western-style diet. We found 8 cardiac miRNAs that were significantly altered in response to maternal obesity, but only when the offspring were challenged postnatally with the Western diet. In contrast, postnatal exposure to the diet alone induced significant changes to the expression of a much larger number of miRNAs (33 in offspring of lean and 46 in offspring of obese). Many of the affected miRNAs have previously been implicated in various cardiac pathologies. The pervasive cardiac miRNA changes induced by a Western diet suggest that an individual's lifestyle choices outweigh the impact of any programming effects by maternal obesity on miRNA-related cardiac health.


Subject(s)
Cardiovascular Diseases/genetics , Epigenesis, Genetic , MicroRNAs/genetics , Myocardium/metabolism , Obesity/genetics , Pregnancy Complications/genetics , Prenatal Exposure Delayed Effects/genetics , Animals , Cardiovascular Diseases/etiology , Female , Mice , Mice, Inbred C57BL , MicroRNAs/metabolism , Obesity/metabolism , Pregnancy , Pregnancy Complications/metabolism
4.
Epigenomics ; 7(7): 1165-71, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26625191

ABSTRACT

The ability of environmental exposures to induce phenotypic change across multiple generations of offspring has gathered an enormous amount of interest in recent years. There are by now many examples of nongenetic transgenerational effects of environmental exposures, covering a broad range of stressors. Available evidence indicates that epigenetic inheritance may mediate at least some of these transgenerational effects, but how environmental exposures induce changes to the epigenome of the germline is unknown. One possibility is that exposed somatic cells can communicate their exposures to the germline to induce a stable change. In this Perspective, we propose that extracellular vesicles shed by somatic cells represent a credible means by which environmental experience could effect a transmissible epigenetic change in the germline, leading to the inheritance of acquired traits.


Subject(s)
Environmental Exposure , Epigenesis, Genetic , Extracellular Vesicles/drug effects , Gene-Environment Interaction , Germ Cells/drug effects , Mutagens/toxicity , Animals , Cell Communication , Environment , Extracellular Vesicles/genetics , Extracellular Vesicles/metabolism , Germ Cells/cytology , Germ Cells/metabolism , Humans , Inheritance Patterns , Mice , Phenotype , RNA, Small Untranslated/genetics , RNA, Small Untranslated/metabolism , Signal Transduction
5.
Noncoding RNA ; 1(3): 246-265, 2015 Nov 30.
Article in English | MEDLINE | ID: mdl-29861426

ABSTRACT

Macro long non-coding RNAs (lncRNAs) play major roles in gene silencing in inprinted gene clusters. Within the imprinted Gnas cluster, the paternally expressed Nespas lncRNA downregulates its sense counterpart Nesp. To explore the mechanism of action of Nespas, we generated two new knock-in alleles to truncate Nespas upstream and downstream of the Nesp promoter. We show that Nespas is essential for methylation of the Nesp differentially methylated region (DMR), but higher levels of Nespas are required for methylation than are needed for downregulation of Nesp. Although Nespas is transcribed for over 27 kb, only Nespas transcript/transcription across a 2.6 kb region that includes the Nesp promoter is necessary for methylation of the Nesp DMR. In both mutants, the levels of Nespas were extraordinarily high, due at least in part to increased stability, an effect not seen with other imprinted lncRNAs. However, even when levels were greatly raised, Nespas remained exclusively cis-acting. We propose Nespas regulates Nesp methylation and expression to ensure appropriate levels of expression of the protein coding transcripts Gnasxl and Gnas on the paternal chromosome. Thus, Nespas mediates paternal gene expression over the entire Gnas cluster via a single gene, Nesp.

6.
Mamm Genome ; 24(7-8): 276-85, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23839232

ABSTRACT

Genes subjected to genomic imprinting are often associated with prenatal and postnatal growth. Furthermore, it has been observed that maternally silenced/paternally expressed genes tend to favour offspring growth, whilst paternally silenced/maternally expressed genes will restrict growth. One imprinted cluster in which this has been shown to hold true is the Gnas cluster; of the three proteins expressed from this cluster, two, Gsα and XLαs, have been found to affect postnatal growth in a number of different mouse models. The remaining protein in this cluster, NESP55, has not yet been shown to be involved in growth. We previously described a new mutation, Ex1A-T, which upon paternal transmission resulted in postnatal growth retardation due to loss of imprinting of Gsα and loss of expression of the paternally expressed XLαs. Here we describe maternal inheritance of Ex1A-T which gives rise to a small but highly significant overgrowth phenotype which we attribute to reduction of maternally expressed NESP55.


Subject(s)
GTP-Binding Protein alpha Subunits, Gs/genetics , Inheritance Patterns/genetics , Animals , Body Size/genetics , Bone Density/genetics , Chromogranins , Female , GTP-Binding Protein alpha Subunits, Gs/metabolism , Genomic Imprinting/genetics , Male , Mice , Mice, Transgenic , Phenotype
7.
Epigenetics ; 8(6): 602-11, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23764993

ABSTRACT

Intrauterine nutrition can program metabolism, creating stable changes in physiology that may have significant health consequences. The mechanism underlying these changes is widely assumed to involve epigenetic changes to the expression of metabolic genes, but evidence supporting this idea is limited. Here we have performed the first study of the epigenomic consequences of exposure to maternal obesity and diabetes. We used a mouse model of natural-onset obesity that allows comparison of genetically identical mice whose mothers were either obese and diabetic or lean with a normal metabolism. We find that the offspring of obese mothers have a latent metabolic phenotype that is unmasked by exposure to a Western-style diet, resulting in glucose intolerance, insulin resistance and hepatic steatosis. The offspring show changes in hepatic gene expression and widespread but subtle alterations in cytosine methylation. Contrary to expectation, these molecular changes do not point to metabolic pathways but instead reside in broadly developmental ontologies. We propose that, rather than being adaptive, these changes may simply produce an inappropriate response to suboptimal environments; maladaptive phenotypes may be avoidable if postnatal nutrition is carefully controlled.


Subject(s)
Diabetes Mellitus, Type 2/metabolism , Epigenesis, Genetic , Gene Expression , Liver/metabolism , Obesity/metabolism , Pregnancy Complications/metabolism , Animals , Diabetes Mellitus, Type 2/genetics , Diet , Female , Fetal Development , Liver/pathology , Male , Mice , Mitochondria, Liver/genetics , Mitochondria, Liver/metabolism , Pregnancy , Pregnancy in Diabetics/metabolism
8.
RNA Biol ; 10(8): 1333-44, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23807490

ABSTRACT

Interactions between glioma cells and their local environment are critical determinants of brain tumor growth, infiltration and neovascularisation. Communication with host cells and stroma via microvesicles represents one pathway by which tumors can modify their surroundings to achieve a tumor-permissive environment. Here we have taken an unbiased approach to identifying RNAs in glioma-derived microvesicles, and explored their potential to regulate gene expression in recipient cells. We find that glioma microvesicles are predominantly of exosomal origin and contain complex populations of coding and noncoding RNAs in proportions that are distinct from those in the cells from which they are derived. Microvesicles show a relative depletion in microRNA compared with their cells of origin, and are enriched in unusual or novel noncoding RNAs, most of which have no known function. Short-term exposure of brain microvascular endothelial cells to glioma microvesicles results in many gene expression changes in the endothelial cells, most of which cannot be explained by direct delivery of transcripts. Our data suggest that the scope of potential actions of tumor-derived microvesicles is much broader and more complex than previously supposed, and highlight a number of new classes of small RNA that remain to be characterized.


Subject(s)
Endothelial Cells/metabolism , Exosomes/metabolism , Gene Expression Regulation, Neoplastic , Glioma/physiopathology , RNA, Messenger/metabolism , RNA, Untranslated/metabolism , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Cell Line, Tumor , Endothelial Cells/pathology , Exosomes/genetics , Gene Expression Profiling , Glioma/metabolism , Humans , Microvessels/cytology , Neovascularization, Pathologic , RNA Transport , RNA, Neoplasm/genetics , RNA, Neoplasm/metabolism
9.
Mol Cell Biol ; 32(5): 1017-29, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22215617

ABSTRACT

The imprinted Gnas cluster is involved in obesity, energy metabolism, feeding behavior, and viability. Relative contribution of paternally expressed proteins XLαs, XLN1, and ALEX or a double dose of maternally expressed Gsα to phenotype has not been established. In this study, we have generated two new mutants (Ex1A-T-CON and Ex1A-T) at the Gnas cluster. Paternal inheritance of Ex1A-T-CON leads to loss of imprinting of Gsα, resulting in preweaning growth retardation followed by catch-up growth. Paternal inheritance of Ex1A-T leads to loss of imprinting of Gsα and loss of expression of XLαs and XLN1. These mice have severe preweaning growth retardation and incomplete catch-up growth. They are fully viable probably because suckling is unimpaired, unlike mutants in which the expression of all the known paternally expressed Gnasxl proteins (XLαs, XLN1 and ALEX) is compromised. We suggest that loss of ALEX is most likely responsible for the suckling defects previously observed. In adults, paternal inheritance of Ex1A-T results in an increased metabolic rate and reductions in fat mass, leptin, and bone mineral density attributable to loss of XLαs. This is, to our knowledge, the first report describing a role for XLαs in bone metabolism. We propose that XLαs is involved in the regulation of bone and adipocyte metabolism.


Subject(s)
Energy Metabolism/genetics , GTP-Binding Protein alpha Subunits, Gs/genetics , Lipid Metabolism/genetics , Obesity/genetics , Animals , Bone and Bones/metabolism , Chromogranins , Female , Gene Dosage , Genetic Loci , Genomic Imprinting , Male , Mice , Mice, Knockout , Protein Isoforms/genetics , Sucking Behavior
10.
RNA ; 18(1): 135-44, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22114321

ABSTRACT

Genomic imprinting is the phenomenon whereby a subset of genes is differentially expressed according to parental origin. Imprinted genes tend to occur in clusters, and microRNAs are associated with the majority of well-defined clusters of imprinted genes. We show here that two microRNAs, miR-296 and miR-298, are part of the imprinted Gnas/GNAS clusters in both mice and humans. Both microRNAs show imprinted expression and are expressed from the paternally derived allele, but not the maternal allele. They arise from a long, noncoding antisense transcript, Nespas, with a promoter more than 27 kb away. Nespas had been shown previously to act in cis to regulate imprinted gene expression within the Gnas cluster. Using microarrays and luciferase assays, IKBKE, involved in many signaling pathways, and Tmed9, a protein transporter, were verified as new targets of miR-296. Thus, Nespas has two clear functions: as a cis-acting regulator within an imprinted gene cluster and as a precursor of microRNAs that modulate gene expression in trans. Furthermore, imprinted microRNAs, including miR-296 and miR-298, impose a parental specific modulation of gene expression of their target genes.


Subject(s)
Genomic Imprinting , MicroRNAs/genetics , Multigene Family/genetics , Animals , Chromogranins , GTP-Binding Protein alpha Subunits, Gs/genetics , HeLa Cells , Humans , I-kappa B Kinase/genetics , Mice , NIH 3T3 Cells
11.
J Biol Chem ; 283(40): 26937-47, 2008 Oct 03.
Article in English | MEDLINE | ID: mdl-18687676

ABSTRACT

Transcription factors of the Sp/Klf (Krüppel-like factor) family regulate biological processes such as hematopoiesis, adipogenesis, and stem cell maintenance. Here we show that Bklf or Klf3 (Basic Krüppel-like factor) represses the Klf8 (Krüppel-like Factor 8) gene in vivo. Conversely, Eklf or Klf1 (Erythroid Krüppel-like factor) activates the Klf8 gene. Klf8 is driven by two promoters, both of which contain multiple CACCC sites. Klf3 can repress Klf1-mediated activation of both promoters. Chromatin immunoprecipitation experiments confirm that Klf3 occupies both Klf8 promoters in vivo. Interestingly, in Klf3 knock-out tissue Klf1 gains access, binds, and activates both Klf8 promoters. These results demonstrate direct competition between activating and repressing Klfs in vivo. Together with previous evidence that Klf1 directly activates the Klf3 gene, the results reveal an elaborate network of cross-talk within the Klf family. The recognition of cross-regulation and potential redundancy between Klf family members is critical to the interpretation of various Klf knock-out mice and the understanding of individual Klfs in particular contexts.


Subject(s)
Kruppel-Like Transcription Factors/biosynthesis , Kruppel-Like Transcription Factors/metabolism , Repressor Proteins/metabolism , Response Elements/physiology , Transcription Factors/biosynthesis , Transcription, Genetic/physiology , Transcriptional Activation/physiology , Adipogenesis/physiology , Animals , COS Cells , Chlorocebus aethiops , Drosophila melanogaster , Hematopoiesis/physiology , Kruppel-Like Transcription Factors/genetics , Mice , Mice, Knockout , Repressor Proteins/genetics , Stem Cells/metabolism , Transcription Factors/genetics
12.
Mol Cell Biol ; 28(12): 3967-78, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18391014

ABSTRACT

Krüppel-like factors (KLFs) recognize CACCC and GC-rich sequences in gene regulatory elements. Here, we describe the disruption of the murine basic Krüppel-like factor gene (Bklf or Klf3). Klf3 knockout mice have less white adipose tissue, and their fat pads contain smaller and fewer cells. Adipocyte differentiation is altered in murine embryonic fibroblasts from Klf3 knockouts. Klf3 expression was studied in the 3T3-L1 cellular system. Adipocyte differentiation is accompanied by a decline in Klf3 expression, and forced overexpression of Klf3 blocks 3T3-L1 differentiation. Klf3 represses transcription by recruiting C-terminal binding protein (CtBP) corepressors. CtBPs bind NADH and may function as metabolic sensors. A Klf3 mutant that does not bind CtBP cannot block adipogenesis. Other KLFs, Klf2, Klf5, and Klf15, also regulate adipogenesis, and functional CACCC elements occur in key adipogenic genes, including in the C/ebpalpha promoter. We find that C/ebpalpha is derepressed in Klf3 and Ctbp knockout fibroblasts and adipocytes from Klf3 knockout mice. Chromatin immunoprecipitations confirm that Klf3 binds the C/ebpalpha promoter in vivo. These results implicate Klf3 and CtBP in controlling adipogenesis.


Subject(s)
Adipocytes/cytology , Alcohol Oxidoreductases/metabolism , DNA-Binding Proteins/metabolism , Gene Expression Regulation, Developmental , Kruppel-Like Transcription Factors/physiology , Transcription Factors/genetics , Transcription Factors/physiology , 3T3-L1 Cells , Adipocytes/metabolism , Adipose Tissue/embryology , Adipose Tissue/metabolism , Animals , Cell Differentiation , Fibroblasts/metabolism , Genotype , Kruppel-Like Transcription Factors/genetics , Mice , Mice, Knockout , Models, Biological , Models, Genetic
13.
J Biol Chem ; 277(43): 40602-9, 2002 Oct 25.
Article in English | MEDLINE | ID: mdl-12192002

ABSTRACT

Alpha-hemoglobin stabilizing protein (AHSP) is a small (12 kDa) and abundant erythroid-specific protein that binds specifically to free alpha-(hemo)globin and prevents its precipitation. When present in excess over beta-globin, its normal binding partner, alpha-globin can have severe cytotoxic effects that contribute to important human diseases such as beta-thalassemia. Because AHSP might act as a chaperone to prevent the harmful aggregation of alpha-globin during normal erythroid cell development and in diseases of globin chain imbalance, it is important to characterize the biochemical properties of the AHSP.alpha-globin complex. Here we provide the first structural information about AHSP and its interaction with alpha-globin. We find that AHSP is a predominantly alpha-helical globular protein with a somewhat asymmetric shape. AHSP and alpha-globin are both monomeric in solution as determined by analytical ultracentrifugation and bind each other to form a complex with 1:1 subunit stoichiometry, as judged by gel filtration and amino acid analysis. We have used isothermal titration calorimetry to show that the interaction is of moderate affinity with an association constant of 1 x 10(7) m(-1) and is thus likely to be biologically significant given the concentration of AHSP (approximately 0.1 mm) and hemoglobin (approximately 4 mm) in the late pro-erythroblast.


Subject(s)
Blood Proteins/chemistry , Globins/chemistry , Molecular Chaperones/chemistry , Amino Acid Sequence , Biophysical Phenomena , Biophysics , Blood Proteins/genetics , Blood Proteins/metabolism , Calorimetry , Globins/metabolism , Humans , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , Molecular Sequence Data , Protein Binding , Sequence Homology, Amino Acid , Solutions , Ultracentrifugation
SELECTION OF CITATIONS
SEARCH DETAIL
...