Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Neuropharmacology ; 62(4): 1730-6, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22155206

ABSTRACT

Over-activation of N-methyl-d-aspartate (NMDA) receptors is critically involved in many neurological conditions, thus there has been considerable interest in developing NMDA receptor antagonists. We have recently identified a series of naphthoic and phenanthroic acid compounds that allosterically modulate NMDA receptors through a novel mechanism of action. In the present study, we have determined the structure-activity relationships of 18 naphthoic acid derivatives for the ability to inhibit the four GluN1/GluN2(A-D) NMDA receptor subtypes. 2-Naphthoic acid has low activity at GluN2A-containing receptors and yet lower activity at other NMDA receptors. 3-Amino addition, and especially 3-hydroxy addition, to 2-naphthoic acid increased inhibitory activity at GluN1/GluN2C and GluN1/GluN2D receptors. Further halogen and phenyl substitutions to 2-hydroxy-3-naphthoic acid leads to several relatively potent inhibitors, the most potent of which is UBP618 (1-bromo-2-hydroxy-6-phenylnaphthalene-3-carboxylic acid) with an IC(50) âˆ¼ 2 µM at each of the NMDA receptor subtypes. While UBP618 is non-selective, elimination of the hydroxyl group in UBP618, as in UBP628 and UBP608, leads to an increase in GluN1/GluN2A selectivity. Of the compounds evaluated, specifically those with a 6-phenyl substitution were less able to fully inhibit GluN1/GluN2A, GluN1/GluN2B and GluN1/GluN2C responses (maximal % inhibition of 60-90%). Such antagonists may potentially have reduced adverse effects by not excessively blocking NMDA receptor signaling. Together, these studies reveal discrete structure-activity relationships for the allosteric antagonism of NMDA receptors that may facilitate the development of NMDA receptor modulator agents for a variety of neuropsychiatric and neurological conditions.


Subject(s)
Naphthalenes/pharmacology , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Allosteric Regulation , Animals , Dose-Response Relationship, Drug , Structure-Activity Relationship , Xenopus
2.
Mol Pharmacol ; 78(6): 1036-45, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20837679

ABSTRACT

Kainate receptors (KARs) modulate synaptic transmission and plasticity, and their dysfunction has been linked to several disease states such as epilepsy and chronic pain. KARs are tetramers formed from five different subunits. GluK1-3 are low affinity kainate binding subunits, whereas GluK4/5 bind kainate with high affinity. A number of these subunits can be present in any given cell type, and different combinations of subunits confer different properties to KARs. Here we report the characterization of a new GluK1 subunit-selective radiolabeled antagonist (S)-1-(2-amino-2-carboxyethyl)-3-(2-carboxythiophene-3-yl-methyl)-5-methylpyrimidine-2,4-dione ([(3)H]UBP310) using human recombinant KARs. [(3)H]UBP310 binds to GluK1 with low nanomolar affinity (K(D) = 21 ± 7 nM) but shows no specific binding to GluK2. However, [(3)H]UBP310 also binds to GluK3 (K(D) = 0.65 ± 0.19 µM) but with ~30-fold lower affinity than that observed for GluK1. Competition [(3)H]UBP310 binding experiments on GluK1 revealed the same rank order of affinity of known GluK1-selective ligands as reported previously in functional assays. Nonconserved residues in GluK1-3 adjudged in modeling studies to be important in determining the GluK1 selectivity of UBP310 were point-mutated to switch residues between subunits. None of the mutations altered the expression or trafficking of KAR subunits. Whereas GluK1-T503A mutation diminished [(3)H]UBP310 binding, GluK2-A487T mutation rescued it. Likewise, whereas GluK1-N705S/S706N mutation decreased, GluK3-N691S mutation increased [(3)H]UBP310 binding activity. These data show that Ala487 in GluK2 and Asn691 in GluK3 are important determinants in reducing the affinity of UBP310 for these subunits. Insights from these modeling and point mutation studies will aid the development of new subunit-selective KAR antagonists.


Subject(s)
Alanine/analogs & derivatives , Protein Subunits/antagonists & inhibitors , Protein Subunits/metabolism , Receptors, Kainic Acid/antagonists & inhibitors , Receptors, Kainic Acid/metabolism , Thymine/analogs & derivatives , Alanine/chemistry , Alanine/metabolism , Animals , Animals, Newborn , Binding Sites/physiology , Binding, Competitive/genetics , Crystallography, X-Ray , HEK293 Cells , Humans , Ligands , Point Mutation/genetics , Protein Subunits/genetics , Protons , Rats , Rats, Wistar , Receptors, Kainic Acid/genetics , Thymine/chemistry , Thymine/metabolism
3.
J Pharmacol Exp Ther ; 335(3): 614-21, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20858708

ABSTRACT

The N-methyl-D-aspartate (NMDA) receptor family regulates various central nervous system functions, such as synaptic plasticity. However, hypo- or hyperactivation of NMDA receptors is critically involved in many neurological and psychiatric conditions, such as pain, stroke, epilepsy, neurodegeneration, schizophrenia, and depression. Consequently, subtype-selective positive and negative modulators of NMDA receptor function have many potential therapeutic applications not addressed by currently available compounds. We have identified allosteric modulators with several novel patterns of NMDA receptor subtype selectivity that have a novel mechanism of action. In a series of carboxylated naphthalene and phenanthrene derivatives, compounds were identified that selectively potentiate responses at GluN1/GluN2A [e.g., 9-iodophenanthrene-3-carboxylic acid (UBP512)]; GluN1/GluN2A and GluN1/GluN2B [9-cyclopropylphenanthrene-3-carboxylic acid (UBP710)]; GluN1/GluN2D [3,5-dihydroxynaphthalene-2-carboxylic acid (UBP551)]; or GluN1/GluN2C and GluN1/GluN2D receptors [6-, 7-, 8-, and 9-nitro isomers of naphth[1,2-c][1,2,5]oxadiazole-5-sulfonic acid (NSC339614)] and have no effect or inhibit responses at the other NMDA receptors. Selective inhibition was also observed; UBP512 inhibits only GluN1/GluN2C and GluN1/GluN2D receptors, whereas 6-bromo-2-oxo-2H-chromene-3-carboxylic acid (UBP608) inhibits GluN1/GluN2A receptors with a 23-fold selectivity compared with GluN1/GluN2D receptors. The actions of these compounds were not competitive with the agonists L-glutamate or glycine and were not voltage-dependent. Whereas the N-terminal regulatory domain was not necessary for activity of either potentiators or inhibitors, segment 2 of the agonist ligand-binding domain was important for potentiating activity, whereas subtype-specific inhibitory activity was dependent upon segment 1. In terms of chemical structure, activity profile, and mechanism of action, these modulators represent a new class of pharmacological agents for the study of NMDA receptor subtype function and provide novel lead compounds for a variety of neurological disorders.


Subject(s)
Membrane Transport Modulators/pharmacology , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Receptors, N-Methyl-D-Aspartate/drug effects , Allosteric Regulation/drug effects , Animals , Binding Sites/physiology , Binding, Competitive , Excitatory Postsynaptic Potentials/drug effects , Excitatory Postsynaptic Potentials/physiology , Glutamic Acid/pharmacology , Glycine/pharmacology , Humans , Membrane Transport Modulators/metabolism , Oocytes/drug effects , Oocytes/physiology , Patch-Clamp Techniques , Protein Structure, Tertiary/drug effects , Protein Structure, Tertiary/genetics , RNA, Complementary/administration & dosage , RNA, Complementary/genetics , Receptors, N-Methyl-D-Aspartate/genetics , Receptors, N-Methyl-D-Aspartate/metabolism , Recombinant Fusion Proteins/drug effects , Recombinant Fusion Proteins/genetics , Sequence Deletion/physiology , Xenopus laevis
4.
J Org Chem ; 69(16): 5405-12, 2004 Aug 06.
Article in English | MEDLINE | ID: mdl-15287789

ABSTRACT

The appropriate combination of methacrylate polymers permits the synthesis of a soluble polymer for use in ruthenium(II)-catalyzed asymmetric transfer hydrogenation reactions. Using a 7:3 copolymer of a poly(ethylene glycol) ester and a hydroxyethyl ester, a derived ruthenium(II)/norephedrine complex catalyses reduction of acetophenone in up to 95% yield and 81% ee.

SELECTION OF CITATIONS
SEARCH DETAIL
...