Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sex Dev ; 7(4): 180-95, 2013.
Article in English | MEDLINE | ID: mdl-23571709

ABSTRACT

Although many aspects of ovarian differentiation have been established, comparatively little is known about prenatal follicle formation and differentiation of bovine ovaries. The objective of this investigation was to study the role of the surface epithelium during the development of germ cell nests, germ cell cords and follicle formation in the fetal bovine ovary. Associated important proliferation and apoptotic features were further investigated. Additionally, the expression pattern of the S100 protein was detected. A strong increase of mitotic figures was detected in the surface epithelium, germ cell nests and germ cell cords of ovaries with a crown-rump length (CRL) of 13.0-58.0 cm. Oocytes were positively stained with S100 in bovine ovaries from fetuses with a CRL of 21.0 cm. The staining intensity enhanced parallel to increasing oocyte and follicle sizes during the ovary development. In later stages, a strong staining for S100 was observed in healthy oocytes in contradistinction to atretic oocytes where no expression of the S100 protein could be found. In conclusion, increasing mitosis index of surface epithelium cells, as well as oogonia directly beneath the surface epithelium, in combination with open surface connection during stages from a CRL of 11.0-94.0 cm of bovine fetal ovaries could play an important role in the period of time of ongoing folliculogenesis and derivation of granulosa cells. Additionally, S100-positive oocytes in primordial and later follicle stages joined by a high rate of Ki67-positive index in surrounding granulosa cells indicate that in the oocytes the S100 protein can perhaps be a useful marker for intact oocytes in bovine ovaries.


Subject(s)
Epithelial Cells/cytology , Epithelium/embryology , Fetal Development , Organogenesis , Ovarian Follicle/cytology , Ovarian Follicle/embryology , Animals , Apoptosis , Cattle , Female , Immunohistochemistry , Ki-67 Antigen/metabolism , S100 Proteins/metabolism
2.
Anat Histol Embryol ; 41(3): 190-201, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22250786

ABSTRACT

The cellular cytoskeleton is composed of three fibrillar systems, namely actin microfilaments, microtubules and intermediate filaments (IFs). It not only is a structural system, which mediates functional compartmentalization, but also contributes to many cellular processes such as transport, mitosis, secretion, formation of cell extensions, intercellular communication and apoptosis. In this study, we have examined the distribution of four groups of IFs [cytokeratins (CKs), vimentin, desmin and lamins] in the somatic and germinal cells of the bovine ovary using RT-PCR and immunohistochemical techniques. Using RT-PCR, specific transcripts for all intermediate proteins studied (CK8, CK18, desmin, vimentin, lamin A/C and lamin B1) were detected. A characteristic immunohistochemical staining pattern was observed for the different IFs within the ovary. In this study, we used antibodies against type I CK (acidic CKs: CK14, CK18 and CK19) and type II CK (basic CKs: CK5 and CK8). Among these, only antibodies against CK18 gave a characteristic pattern of immunostaining in the ovary, which included the surface epithelium, the follicle cells, the endothelium of blood vessels and rete ovarii. Antibodies against all other CKs resulted in a weak staining of a limited number of cellular structures (CK5 and CK19) or were completely negative (CK8 and CK14, apart from the surface epithelium). Vimentin antibodies resulted occasionally in a weak staining of the granulosa cells of primary and secondary follicles. In late secondary follicles, the basal and the most apical follicle cells contacting the zona pellucida usually showed a marked immunostaining for vimentin. In antral follicles, three different immunostaining patterns for vimentin were observed. Desmin immunostaining was confined to the smooth muscle cells of blood vessels. Although mRNA for lamin A/C and lamin B1 could be demonstrated using RT-PCR, no immunostaining was found for lamins, neither in the follicle cells nor in the oocytes.


Subject(s)
Cattle/physiology , Intermediate Filaments/genetics , Intermediate Filaments/metabolism , Ovarian Follicle/physiology , Animals , Antibodies/immunology , Desmin/analysis , Desmin/immunology , Female , Granulosa Cells , Immunohistochemistry , Keratins/analysis , Keratins/immunology , Lamins/analysis , Lamins/immunology , Oocytes , Vimentin/analysis , Vimentin/immunology
3.
Neuropediatrics ; 36(3): 210-3, 2005 Jun.
Article in English | MEDLINE | ID: mdl-15944908

ABSTRACT

Severe myoclonic epilepsy in infancy (SMEI), severe idiopathic generalized epilepsy of infancy (SIGEI) with generalized tonic clonic seizures (GTCS), and myoclonic astatic epilepsy (MAE) may show semiological overlaps. In GEFS+ families, all three phenotypes were found associated with mutations in the SCN1A gene. We analyzed the SCN1A gene in 20 patients with non-familial myoclonic astatic epilepsy -- including 12 probands of the original cohort used by Doose et al. in 1970 to delineate MAE. In addition, 18 patients with sporadic SIGEI -- mostly without myoclonic-astatic seizures -- were analyzed. Novel SCN1A mutations were found in 3 individuals. A frame shift resulting in an early premature stop codon in a now 35-year-old woman with a borderline phenotype of MAE and SIGEI (L433fsX449) was identified. A splice site variant (IVS18 + 5 G --> C) and a missense mutation in the conserved pore region (40736 C --> A; R946 S) were detected each in a child with SIGEI. We conclude that, independent of precise syndromic delineation, myoclonic-astatic seizures are not predictive of SCN1A mutations in sporadic myoclonic epilepsies of infancy and early childhood.


Subject(s)
Epilepsies, Myoclonic/genetics , Epilepsy, Tonic-Clonic/genetics , Nerve Tissue Proteins/genetics , Sodium Channels/genetics , Child , Child Development , DNA Mutational Analysis , Epilepsies, Myoclonic/physiopathology , Epilepsies, Myoclonic/psychology , Epilepsy, Tonic-Clonic/physiopathology , Epilepsy, Tonic-Clonic/psychology , Female , Follow-Up Studies , Humans , Infant , Male , NAV1.1 Voltage-Gated Sodium Channel
SELECTION OF CITATIONS
SEARCH DETAIL
...