Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 858(Pt 3): 159984, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36356751

ABSTRACT

Anaerobic digestion of lignocelluloses for biogas production is greatly restricted by the poor biomass degradability. Herein, a novel approach is suggested to enhance the energy recovery from rice straw through a two-step conversion using eggshell-based catalytic pyrolysis followed by biochar-based anaerobic co-digestion. Pyrolysis with eggshell significantly enhanced the crude bio-oil yield by 4.6 %. Anaerobic digestion of rice straw using 4 g L-1 of rice straw biochar (RB) showed the highest recorded biogas yield of 503.7 L kg-1 VS, with 268.6 L kg-1 VS biomethane yield. However, 4 g L-1 of calcium-enriched eggshell rice straw biochar (ERB) enhanced the biomethane yield to 281.8 L kg-1 VS, which represented 95.6 % higher than the control. It was attributed to enhancement of biomethanation, which resulted in 74.5 % maximum recorded biomethane content at the 7th day of anaerobic digestion. Microbial analysis confirmed that Methanosarciniales was the most dominant Archael group in the control (14.84 %), which increased sharply to 73.91 % and 91.66 % after addition of 4 g L-1 RB and ERB, respectively. The suggested route enhanced the energy recovery in the form of bio-oil and biomethane by 41.6 %.


Subject(s)
Calcium , Oryza
2.
Chemosphere ; 310: 136758, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36216112

ABSTRACT

Utilization of phenol formaldehyde foams is becoming increasingly widespread, especially in floral bouquets, generating toxic microplastics in the environment. The present study evaluated phenols recovery from floral foam waste (FFW) of floral bouquets through optimization of pyrolysis conditions. Compared to the biomass portion in the floral bouquet, FFW showed 55.1% higher carbon content, 56.9% lower nitrogen content, and 44.6% lower oxygen content, with the highest recorded calorific value of 27.43 MJ kg-1. Thermogravimetric analysis showed the relative thermal stability of FFW with gradual weight loss and numerous small peaks at 70 °C (representing short chain volatiles such as formaldehyde and phenol), 450 and 570 °C (due to phenolic and aromatic products release), indicating the richness of FFW with phenolic compounds. Optimization of pyrolysis conditions showed the highest significant biocrude yield of 36.0% at 700 °C for 20 min using FFW load of 2.5 g. However, optimization of phenolic production suggested 520 °C, 30 min, and 3.49 g FFW load as optimum conditions for high biocrude yield with enhanced phenolic proportion. Experimental results using the aforementioned conditions showed phenolics potential of 0.22 g phenolics/g FFW, with 78.8% phenolic compounds composed mainly of phenol and its methyl derivatives.


Subject(s)
Phenols , Pyrolysis , Phenol , Plastics , Formaldehyde
3.
Chemosphere ; 307(Pt 3): 135955, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35961457

ABSTRACT

Resource depletion and climate changes due to human activities and excessive burning of fossil fuels are the driving forces to explore alternatives clean energy resources. Anaerobic digestion of bio-waste provides a unique opportunity to fulfil this objective through biogas production. The present study aimed to evaluate waste hot-pot oil (WHPO) at different feeding ratios as a novel lipidic waste for anaerobic mono-digestion. The highest recorded maximum biomethane potential (Mmax) was 274.1 L kg-1 VS at 1.2% WHPO, which showed significant differences with those of 0.8% and 1.6% (227.09 and 237.62 L kg-1 VS, respectively). The changes in volatile fatty acids (VFAs), medium chain fatty acids (MCFAs), and long-chain fatty acids (LCFAs) as intermediates of WHPO decomposition were investigated before and after anaerobic digestion. Results showed efficient production and utilization of VFAs at all studied WHPO ratios, whereas the maximum utilization of VFAs (90-95%) was recorded in the reactors with up to 1.2 %WHPO. Although lipid conversion efficiency decreased by increasing the WHPO ratio, 81.2% lipid conversion efficiency was recorded at the highest applied WHPO treatment, which confirms the potential of WHPO as a promising feedstock for anaerobic digestion. The present results will have major implications towards efficient energy recovery and biochemical management of lipidic-waste through efficient anaerobic digestion.


Subject(s)
Biofuels , Bioreactors , Anaerobiosis , Fatty Acids , Fatty Acids, Volatile/metabolism , Fossil Fuels , Humans , Methane
4.
Bioresour Technol ; 323: 124640, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33421829

ABSTRACT

This study evaluated in-situ co-transesterification of wet spent coffee ground (SCG)/microalgae mixture for enhanced biodiesel production. SCG and microalgae showed lipid contents of 16.0 and 23.6 wt%, respectively. A total of 27 transesterification runs were performed using wet SCG:algae (1:1, w/w) at different temperatures, times, and solvent ratios. Box-Behnken quadratic model suggested 198 °C, 6 mL solvent g-1 biomass, and reaction time of 132 min as the optimum conditions for maximum biodiesel yield. At different SCG/microalgae blend ratios, pure microalgae showed the highest biodiesel yield of 20.15 wt%. Increase of SCG ratio resulted in significant reduction in the biodiesel yield, reaching the lowest value of 11.2 wt% using pure SCG. On the other hand, SCG showed better biodiesel characteristics than microalgae regarding iodine value, cetane number, and oxidation stability. The present results confirmed that SCG-algae blend results in dual effect of enhancing biodiesel yield and quality, comparing to the individual transesterification.


Subject(s)
Biofuels , Microalgae , Biomass , Coffee , Esterification
5.
Bioresour Technol ; 288: 121514, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31129520

ABSTRACT

The present study investigated the effect of monochromatic light-emitting diodes (LEDs) on the growth and biodiesel yield of the green microalga Scenedesmus obliquus. Different LEDs were applied individually or in combination during the night period. Among different individual treatments, red and blue illumination showed the highest biomass and lipid productivity due to stimulation of pigmentation and photosystem II, respectively. Microalgal growth, lipid production and biodiesel recovery significantly increased under combined blue-red illumination. In addition, saturated and monounsaturated fatty acids proportions increased in favor of polyunsaturated ones. Moreover, blue-red LEDs enhanced the net biodiesel energy output over the control. The total increase in net energy output represented 5.1, 3.8 and 10.8 MJ using red, blue and blue-red light, respectively. In conclusion, application of blue-red LEDs during the night period is an economical technology for microalgae cultivation, which might have a potential impact on the future of commercial biodiesel production from microalgae.


Subject(s)
Microalgae , Biofuels , Biomass , Light , Lighting
6.
Bioresour Technol ; 265: 163-169, 2018 Oct.
Article in English | MEDLINE | ID: mdl-29890441

ABSTRACT

The effect of static magnetic field (SMF) on Spirulina platensis growth and its influence on cadmium ions (Cd2+) removal efficiency were studied. Application of 6 h day-1 SMF resulted in the highest significant biomass productivity of 0.198 g L-1 day-1. However, 10 and 15 mg L-1 of Cd2+ resulted in significant reduction in biomass productivity by 8.8 and 12.5%, respectively, below the control. Combined SMF showed 30.1% significant increase in biomass productivity over the control. On the other hand, increase of initial Cd2+ concentration resulted in significant reduction of Cd2+ removal efficiency, representing 79.7% and 61.5% at 10 and 15 mg L-1, respectively, after 16 days. Interestingly, application of SMF for 6 h day-1 enhanced Cd2+ removal efficiency counted by 91.4% and 82.3% after 20 days for cultures with initial Cd2+ concentration of 10 and 15 mg L-1, representing increase by 6.3 and 25.3%, respectively, over the SMF-untreated cultures.


Subject(s)
Cadmium/pharmacokinetics , Magnetic Fields , Spirulina , Adsorption , Biomass
7.
BMC Syst Biol ; 12(1): 21, 2018 02 23.
Article in English | MEDLINE | ID: mdl-29475447

ABSTRACT

After publication of the article [1], it has been brought to our attention that an author's name was spelt incorrectly in the original published article. Yonghua Wang was previously spelt "Yonghua Wan". This has now been corrected in the revised version of the article.

8.
BMC Syst Biol ; 12(1): 2, 2018 01 04.
Article in English | MEDLINE | ID: mdl-29301573

ABSTRACT

BACKGROUND: Dengue virus (DENV) is an increasing global health threat and associated with induction of both a long-lived protective immune response and immune-suppression. So far, the potency of treatment of DENV via antiviral drugs is still under investigation. Recently, increasing evidences suggest the potential role of microRNAs (miRNAs) in regulating DENV. The present study focused on the function of miRNAs in innate insusceptible reactions and organization of various types of immune cells and inflammatory responses for DENV. Three drugs were tested including antiviral herbal medicine ReDuNing (RDN), Loratadine (LRD) and Acetaminophen. RESULTS: By the microarray expression of miRNAs in 165 Patients. Results showed that 89 active miRNAs interacted with 499 potential target genes, during antiviral treatment throughout the critical stage of DENV. Interestingly, reduction of the illness threats using RDN combined with LRD treatment showed better results than Acetaminophen alone. The inhibitions of DENV was confirmed by decrease concentrations of cytokines and interleukin parameters; like TNF-α, IFN-γ, TGF-ß1, IL-4, IL-6, IL-12, and IL-17; after treatment and some coagulants factors increased. CONCLUSIONS: This study showed a preliminary support to suggest that the herbal medicine RDN combined with LRD can reduce both susceptibility and the severity of DENV.


Subject(s)
Antiviral Agents/pharmacology , Dengue Virus/physiology , Dengue/genetics , Gene Regulatory Networks/drug effects , MicroRNAs/genetics , Blood Coagulation Factors/metabolism , Dengue/immunology , Dengue/metabolism , Dengue Virus/drug effects , Humans , Inflammation/immunology , Transcriptome/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...