Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 10(12): e32990, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38994080

ABSTRACT

Compression systems based electromechanical actuators require a good understanding of their dynamics for a better performance. This paper deals with the study of the nonlinear dynamics of an electromechanical system with two rotating arms subjected to a sinusoidal excitation for fluid compression purposes. The physical model integrating two balloons to be compressed by the arms alternately is presented and the mathematical equations traducing their dynamics are established. We emphasize on the influence of some control parameters namely the supply voltage, the discontinuity position and the viscoelastic ratio on the behaviour of the angular displacement of the arms. The study is also done by neglecting the inductance in the electrical part of the system. It is obtained that while the arms exhibit periodic motion during regular movement, compression of the balloons induces a shift to multi-periodic or chaotic dynamics, occasionally reverting to periodicity. Experimental and numerical simulation results demonstrate good agreement, with the R-system approximating more experimental outcomes than the RL-system. These findings hold significant implications for various environmental applications utilizing pump technology.

SELECTION OF CITATIONS
SEARCH DETAIL
...