Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Sci Rep ; 13(1): 21660, 2023 12 08.
Article in English | MEDLINE | ID: mdl-38066086

ABSTRACT

The potassium chloride cotransporter KCC2 is crucial for Cl- extrusion from mature neurons and thus key to hyperpolarizing inhibition. Auditory brainstem circuits contain well-understood inhibitory projections and provide a potent model to study the regulation of synaptic inhibition. Two peculiarities of the auditory brainstem are (i) posttranslational activation of KCC2 during development and (ii) extremely negative reversal potentials in specific circuits. To investigate the role of the potent phospho-site serine 937 therein, we generated a KCC2 Thr934Ala/Ser937Asp double mutation, in which Ser937 is replaced by aspartate mimicking the phosphorylated state, and the neighbouring Thr934 arrested in the dephosphorylated state. This double mutant showed a twofold increased transport activity in HEK293 cells, raising the hypothesis that auditory brainstem neurons show lower [Cl-]i. and increased glycinergic inhibition. This was tested in a mouse model carrying the same KCC2 Thr934Ala/Ser937Asp mutation by the use of the CRISPR/Cas9 technology. Homozygous KCC2 Thr934Ala/Ser937Asp mice showed an earlier developmental onset of hyperpolarisation in the auditory brainstem. Mature neurons displayed stronger glycinergic inhibition due to hyperpolarized ECl-. These data demonstrate that phospho-regulation of KCC2 Ser937 is a potent way to interfere with the excitation-inhibition balance in neural circuits.


Subject(s)
K Cl- Cotransporters , Serine , Animals , Humans , Mice , HEK293 Cells , K Cl- Cotransporters/metabolism , Neurons/metabolism , Phosphorylation/physiology , Serine/metabolism
2.
RNA Biol ; 20(1): 629-640, 2023 01.
Article in English | MEDLINE | ID: mdl-37602850

ABSTRACT

The peripheral and central auditory subsystems together form a complex sensory network that allows an organism to hear. The genetic programs of the two subsystems must therefore be tightly coordinated during development. Yet, their interactions and common expression pathways have never been systematically explored. MicroRNAs (miRNAs) are short non-coding RNAs that regulate gene expression and are essential for normal development of the auditory system. We performed mRNA and small-RNA sequencing of organs from both auditory subsystems at three critical developmental timepoints (E16, P0, P16) to obtain a comprehensive and unbiased insight of their expression profiles. Our analysis reveals common and organ-specific expression patterns for differentially regulated mRNAs and miRNAs, which could be clustered with a particular selection of functions such as inner ear development, Wnt signalling, K+ transport, and axon guidance, based on gene ontology. Bioinformatics detected enrichment of predicted targets of specific miRNAs in the clusters and predicted regulatory interactions by monitoring opposite trends of expression of miRNAs and their targets. This approach identified six miRNAs as strong regulatory candidates for both subsystems. Among them was miR-96, an established critical factor for proper development in both subsystems, demonstrating the strength of our approach. We suggest that other miRNAs identified by this analysis are also common effectors of proper hearing acquirement. This first combined comprehensive analysis of the developmental program of the peripheral and central auditory systems provides important data and bioinformatics insights into the shared genetic program of the two sensory subsystems and their regulation by miRNAs.


Subject(s)
MicroRNAs , Superior Olivary Complex , Cochlea , Computational Biology , Gene Ontology , MicroRNAs/genetics , RNA, Messenger/genetics
3.
J Neurosci ; 41(32): 6796-6811, 2021 08 11.
Article in English | MEDLINE | ID: mdl-34193555

ABSTRACT

A point mutation in miR-96 causes non-syndromic progressive peripheral hearing loss and alters structure and physiology of the central auditory system. To gain further insight into the functions of microRNAs (miRNAs) within the central auditory system, we investigated constitutive Mir-183/96dko mice of both sexes. In this mouse model, the genomically clustered miR-183 and miR-96 are constitutively deleted. It shows significantly and specifically reduced volumes of auditory hindbrain nuclei, because of decreases in cell number and soma size. Electrophysiological analysis of the calyx of Held synapse in the medial nucleus of the trapezoid body (MNTB) demonstrated strongly altered synaptic transmission in young-adult mice. We observed an increase in quantal content and readily releasable vesicle pool size in the presynapse while the overall morphology of the calyx was unchanged. Detailed analysis of the active zones (AZs) revealed differences in its molecular composition and synaptic vesicle (SV) distribution. Postsynaptically, altered clustering and increased synaptic abundancy of the AMPA receptor subunit GluA1 was observed resulting in an increase in quantal amplitude. Together, these presynaptic and postsynaptic alterations led to a 2-fold increase of the evoked excitatory postsynaptic currents in MNTB neurons. None of these changes were observed in deaf Cldn14ko mice, confirming an on-site role of miR-183 and miR-96 in the auditory hindbrain. Our data suggest that the Mir-183/96 cluster plays a key role for proper synaptic transmission at the calyx of Held and for the development of the auditory hindbrain.SIGNIFICANCE STATEMENT The calyx of Held is the outstanding model system to study basic synaptic physiology. Yet, genetic factors driving its morphologic and functional maturation are largely unknown. Here, we identify the Mir-183/96 cluster as an important factor to regulate its synaptic strength. Presynaptically, Mir-183/96dko calyces show an increase in release-ready synaptic vesicles (SVs), quantal content and abundance of the proteins Bassoon and Piccolo. Postsynaptically, the quantal size as well as number and size of GluA1 puncta were increased. The two microRNAs (miRNAs) are thus attractive candidates for regulation of synaptic maturation and long-term adaptations to sound levels. Moreover, the different phenotypic outcomes of different types of mutations in the Mir-183 cluster corroborate the requirement of mutation-tailored therapies in patients with hearing loss.


Subject(s)
Brain Stem/metabolism , MicroRNAs/metabolism , Synapses/physiology , Synaptic Transmission/physiology , Animals , Female , Male , Mice , Mice, Knockout
4.
J Comp Neurol ; 529(11): 3032-3045, 2021 08 01.
Article in English | MEDLINE | ID: mdl-33786818

ABSTRACT

The dorsal cochlear nucleus (DCN) is a mammalian-specific nucleus of the auditory system. Anatomically, it is classified as a cerebellum-like structure. These structures are proposed to share genetic programs with the cerebellum. Previous analyses demonstrated that inhibitory serial sister cell types (SCTs) of the DCN and cerebellum are derived from the pancreatic transcription factor 1a (Ptf1a) lineage. Postmitotic neurons of the Ptf1a lineage often express the transcription factor Ladybird homeobox protein homolog 1 (Lbx1) which is involved in neuronal cell fate determination. Lbx1 is therefore an attractive candidate for a further component of the genetic program shared between the DCN and cerebellum. Here, we used cell-type specific marker analysis in combination with an Lbx1 reporter mouse line to analyze in both tissues which cell types of the Ptf1a lineage express Lbx1. In the DCN, stellate cells and Purkinje-like cartwheel cells were part of the Lbx1 lineage and Golgi cells were not, as determined by cell counts. In contrast, in the cerebellum, stellate cells and Golgi cells were part of the Lbx1 lineage and Purkinje cells were not. Hence, two out of three phenotypically similar cell types differed with respect to their Lbx1 expression. Our study demonstrates that Lbx1 is differentially recruited to the developmental genetic program of inhibitory neurons both within a given tissue and between the DCN and cerebellum. The differential expression of Lbx1 within the DCN and the cerebellum might contribute to the genetic individuation of the inhibitory SCTs to adapt to circuit specific tasks.


Subject(s)
Cerebellum/metabolism , Cochlear Nucleus/metabolism , Muscle Proteins/biosynthesis , Neural Inhibition/physiology , Neurons/metabolism , Animals , Cerebellum/chemistry , Cochlear Nucleus/chemistry , Female , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Muscle Proteins/analysis , Muscle Proteins/genetics , Neurons/chemistry
5.
J Neurosci Methods ; 325: 108316, 2019 09 01.
Article in English | MEDLINE | ID: mdl-31251949

ABSTRACT

BACKGROUND: Measuring visual evoked potentials (VEP) by means of EEG allows the quasi non-invasive assessment of visual function in mice. Such sensory phenotyping is important to screen for genetic or aging effects on vision in preclinical mouse models. Thus, a standardized EEG-like approach for the assessment of sensory evoked potentials in mice is desirable. NEW METHOD: We describe a method to obtain the topographical distribution of flash evoked VEPs with 32-channel thin-film EEG electrode arrays in anesthetized mice. Further, we provide suggestions for the optimal choice of adequate digital filtering, referencing, and stimulus parameters for fast and reliable assessment of VEP parameters and distribution. RESULTS: 32-channel thin-film electrodes provided clear information on the VEP topography across the skull. Re-referencing, such as bipolar, common average, and local average montages could be used to further refine the information on VEP topography. A balanced choice of digital high-pass filter, signal averaging and stimulus rate allowed to minimize measurement duration and at the same time assured good VEP signal-to-noise ratio. COMPARISON WITH EXISTING METHODS: Subdermal electrodes or single skull screws provide only limited topographical information of the VEP. Assessment of VEPs with 32-channel thin-film electrodes can provide comparable signal quality with superior spatial resolution and standardized topographical and hemispheric information of VEP distribution. CONCLUSIONS: EEG-like thin-film electrodes are an efficient tool for fast, comprehensive sensory phenotyping with topographical information in mice. This is a step towards the use of standardized mouse EEG to characterize EEG biomarkers in mouse models of human diseases.


Subject(s)
Cerebral Cortex/physiology , Electroencephalography/methods , Evoked Potentials, Visual/physiology , Animals , Biomarkers , Electrodes , Electroencephalography/instrumentation , Female , Male , Mice , Mice, Inbred C57BL
6.
BMC Neurosci ; 18(1): 75, 2017 10 26.
Article in English | MEDLINE | ID: mdl-29073893

ABSTRACT

BACKGROUND: In the mammalian superior olivary complex (SOC), synaptic inhibition contributes to the processing of binaural sound cues important for sound localization. Previous analyses demonstrated a tonotopic gradient for postsynaptic proteins mediating inhibitory neurotransmission in the lateral superior olive (LSO), a major nucleus of the SOC. To probe, whether a presynaptic molecular gradient exists as well, we investigated immunoreactivity against the vesicular inhibitory amino acid transporter (VIAAT) in the mouse auditory brainstem. RESULTS: Immunoreactivity against VIAAT revealed a gradient in the LSO and the superior paraolivary nucleus (SPN) of NMRI mice, with high expression in the lateral, low frequency processing limb and low expression in the medial, high frequency processing limb of both nuclei. This orientation is opposite to the previously reported gradient of glycine receptors in the LSO. Other nuclei of the SOC showed a uniform distribution of VIAAT-immunoreactivity. No gradient was observed for the glycine transporter GlyT2 and the neuronal protein NeuN. Formation of the VIAAT gradient was developmentally regulated and occurred around hearing-onset between postnatal days 8 and 16. Congenital deaf Claudin14 -/- mice bred on an NMRI background showed a uniform VIAAT-immunoreactivity in the LSO, whereas cochlear ablation in NMRI mice after hearing-onset did not affect the gradient. Additional analysis of C57Bl6/J, 129/SvJ and CBA/J mice revealed a strain-specific formation of the gradient. CONCLUSIONS: Our results identify an activity-regulated gradient of VIAAT in the SOC of NRMI mice. Its absence in other mouse strains adds a novel layer of strain-specific features in the auditory system, i.e. tonotopic organization of molecular gradients. This calls for caution when comparing data from different mouse strains frequently used in studies involving transgenic animals. The presence of strain-specific differences offers the possibility of genetic mapping to identify molecular factors involved in activity-dependent developmental processes in the auditory system. This would provide an important step forward concerning improved auditory rehabilitation in cases of congenital deafness.


Subject(s)
Auditory Perception/physiology , Superior Olivary Complex/metabolism , Vesicular Inhibitory Amino Acid Transport Proteins/metabolism , Animals , Auditory Pathways/cytology , Auditory Pathways/growth & development , Auditory Pathways/metabolism , Auditory Pathways/pathology , Cell Extracts , Claudins/genetics , Claudins/metabolism , Cochlea/physiopathology , DNA-Binding Proteins , Deafness/metabolism , Deafness/pathology , Female , Gene Expression Regulation, Developmental , Glycine Plasma Membrane Transport Proteins/metabolism , Male , Mice , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Inbred CBA , Mice, Knockout , Nerve Tissue Proteins/metabolism , Nuclear Proteins/metabolism , Species Specificity , Superior Olivary Complex/cytology , Superior Olivary Complex/growth & development , Superior Olivary Complex/pathology , Tissue Extracts
7.
Cell Tissue Res ; 365(2): 247-64, 2016 08.
Article in English | MEDLINE | ID: mdl-27083448

ABSTRACT

Histone methylation is an important epigenetic mark leading to changes in DNA accessibility and transcription. Here, we investigate immunoreactivity against the euchromatic histone-lysine N-methyltransferase EHMT2 and its catalyzed mono- and dimethylation marks at histone 3 lysine 9 (H3K9me1 and H3K9me2) during postnatal differentiation of the mouse central auditory system. In the brainstem, expression of EHMT2 was high in the first postnatal week and down-regulated thereafter. In contrast, immunoreactivity in the auditory cortex (AC) remained high during the first year of life. This difference might be related to distinct demands for adult plasticity. Analyses of two deaf mouse models, namely Cldn14 (-/-) and Cacna1d (-/-), demonstrated that sound-driven or spontaneous activity had no influence on EHMT2 immunoreactivity. The methylation marks H3K9me1 and H3K9me2 were high throughout the auditory system up to 1 year. Young auditory neurons showed immunoreactivity against both methylations at similar intensities, whereas many mature neurons showed stronger labeling for either H3K9me1 or H3K9me2. These differences were only poorly correlated with cell types. To identify methyltransferases contributing to the persistent H3K9me1 and H3K9me2 marks in the adult brainstem, EHMT1 and the retinoblastoma-interacting zinc-finger protein RIZ1 were analyzed. Both were down-regulated during brainstem development, similar to EHMT2. Contrary to EHMT2, EHMT1 was also down-regulated in adult cortical areas. Together, our data reveal a marked difference in EHMT2 levels between mature brainstem and cortical areas and a decoupling between EHMT2 abundance and histone 3 lysine 9 methylations during brainstem differentiation. Furthermore, EHMT1 and EHMT2 are differentially expressed in cortical areas.


Subject(s)
Auditory Pathways/enzymology , Auditory Pathways/growth & development , Biocatalysis , Histone-Lysine N-Methyltransferase/metabolism , Histones/metabolism , Lysine/metabolism , Animals , Animals, Newborn , Auditory Cortex/metabolism , Brain Stem/growth & development , Brain Stem/metabolism , Down-Regulation/genetics , Hearing , Methylation , Mice, Inbred C57BL , Neocortex/metabolism , Neurons/metabolism
8.
J Biol Chem ; 290(39): 23692-710, 2015 Sep 25.
Article in English | MEDLINE | ID: mdl-26242732

ABSTRACT

Cav1.2 and Cav1.3 are the major L-type voltage-gated Ca(2+) channels in the CNS. Yet, their individual in vivo functions are largely unknown. Both channel subunits are expressed in the auditory brainstem, where Cav1.3 is essential for proper maturation. Here, we investigated the role of Cav1.2 by targeted deletion in the mouse embryonic auditory brainstem. Similar to Cav1.3, loss of Cav1.2 resulted in a significant decrease in the volume and cell number of auditory nuclei. Contrary to the deletion of Cav1.3, the action potentials of lateral superior olive (LSO) neurons were narrower compared with controls, whereas the firing behavior and neurotransmission appeared unchanged. Furthermore, auditory brainstem responses were nearly normal in mice lacking Cav1.2. Perineuronal nets were also unaffected. The medial nucleus of the trapezoid body underwent a rapid cell loss between postnatal days P0 and P4, shortly after circuit formation. Phosphorylated cAMP response element-binding protein (CREB), nuclear NFATc4, and the expression levels of p75NTR, Fas, and FasL did not correlate with cell death. These data demonstrate for the first time that both Cav1.2 and Cav1.3 are necessary for neuronal survival but are differentially required for the biophysical properties of neurons. Thus, they perform common as well as distinct functions in the same tissue.


Subject(s)
Auditory Pathways/cytology , Brain Stem/cytology , Calcium Channels, L-Type/physiology , Action Potentials/physiology , Animals , Auditory Pathways/metabolism , Brain Stem/metabolism , Cell Death , Extracellular Matrix/metabolism , Mice
10.
Cell Tissue Res ; 361(1): 33-48, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25636588

ABSTRACT

A defining feature of the mammalian auditory system is the extensive processing of sound information in numerous ultrafast and temporally precise circuits in the hindbrain. By exploiting the experimental advantages of mouse genetics, recent years have witnessed an impressive advance in our understanding of developmental mechanisms involved in the formation and refinement of these circuits. Here, we will summarize the progress made in four major fields: the dissection of the rhombomeric origins of auditory hindbrain nuclei; the molecular repertoire involved in circuit formation such as Hox transcription factors and the Eph-ephrin signaling system; the timeline of functional circuit assembly; and the critical role of spontaneous activity for circuit refinement. In total, this information provides a solid framework for further exploration of the factors shaping auditory hindbrain circuits and their specializations. A comprehensive understanding of the developmental pathways and instructive factors will also offer important clues to the causes and consequences of hearing-loss related disorders, which represent the most common sensory impairment in humans.


Subject(s)
Auditory Pathways/embryology , Nervous System/embryology , Rhombencephalon/embryology , Animals , Humans , Mammals , Transcription Factors
11.
Hear Res ; 312: 9-20, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24566090

ABSTRACT

The highly variable benefit of hearing devices is a serious challenge in auditory rehabilitation. Various factors contribute to this phenomenon such as the diversity in ear defects, the different extent of auditory nerve hypoplasia, the age of intervention, and cognitive abilities. Recent analyses indicate that, in addition, central auditory functions of deafness genes have to be considered in this context. Since reduced neuronal activity acts as the common denominator in deafness, it is widely assumed that peripheral deafness influences development and function of the central auditory system in a stereotypical manner. However, functional characterization of transgenic mice with mutated deafness genes demonstrated gene-specific abnormalities in the central auditory system as well. A frequent function of deafness genes in the central auditory system is supported by a genome-wide expression study that revealed significant enrichment of these genes in the transcriptome of the auditory brainstem compared to the entire brain. Here, we will summarize current knowledge of the diverse central auditory functions of deafness genes. We furthermore propose the intimately interwoven gene regulatory networks governing development of the otic placode and the hindbrain as a mechanistic explanation for the widespread expression of these genes beyond the cochlea. We conclude that better knowledge of central auditory dysfunction caused by genetic alterations in deafness genes is required. In combination with improved genetic diagnostics becoming currently available through novel sequencing technologies, this information will likely contribute to better outcome prediction of hearing devices.


Subject(s)
Auditory Pathways/physiology , Cochlear Nucleus/physiology , Deafness/genetics , Deafness/therapy , Transcriptome , Animals , Humans , Mice, Transgenic , Precision Medicine
SELECTION OF CITATIONS
SEARCH DETAIL
...