Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 14(22)2022 Nov 12.
Article in English | MEDLINE | ID: mdl-36433012

ABSTRACT

A novel blend of unsaturated polyester (UP) resin with an inherently flame-retardant and char-forming melamine formaldehyde (MF) resin has been prepared with the aim of reducing the flammability of the former. MF resin, sourced as a spray-dried resin, was dissolved in diethyleneglycol solvent; the dissolved resin and the UP-MF blend were autocured by heating under conditions normally used for curing UP, i.e., room temperature for 24 h and post-curing at 80 °C for 12-24 h. The cured UP-MF blends, although heterogeneous in nature, were rigid materials having fire performances superior to those of the cured UP alone. The blends also burned, but with a much reduced smoke output compared with that from UP. Although the heterogeneity of the blends helped in improving the fire performances of the blends in terms of the MF domains forming a semi-protective char, acting as thermal barriers for the adjoining UP domains, and hence reducing their thermal degradation, the mechanical properties of composites based on them were impaired. Nevertheless, whilst UP/MF blends may not be suitable for use as matrices in glass-reinforced composites in load-bearing applications, they may lend themselves to applications as fire-retardant gel coats, especially in view of their low-smoke, char-forming attributes.

2.
Molecules ; 25(3)2020 Feb 06.
Article in English | MEDLINE | ID: mdl-32041132

ABSTRACT

Thin coatings of crosslinked poly(vinylphosphonic acid), PVPA, display good adhesion and excellent intumescent, fire-retardant barrier properties when applied to the surfaces of a typical thermoplastic, such as poly(methyl methacrylate), but perform relatively poorly in water-soak tests. To strengthen and further improve the barrier properties of the intumescent char and to make the coating more hydrophobic, PVPA has been complexed with various inorganic and organic species. The chars formed from coatings of some of these hybrid materials are less friable than chars from coatings synthesized from crosslinked PVPA alone, and show higher levels of water tolerance with no significant reduction in dry adhesion to the substrate.


Subject(s)
Fires/prevention & control , Organophosphonates/chemistry , Polyvinyls/chemistry , Flame Retardants , Materials Testing/methods
3.
Org Biomol Chem ; 3(7): 1323-9, 2005 Apr 07.
Article in English | MEDLINE | ID: mdl-15785823

ABSTRACT

The distribution of ozonide and oligomeric structures formed on complete ozonolysis of alkenes in a non-participating solvent at -60 degrees C is governed by the alkyl substitution around the carbon-carbon double bond. The ozonolysis of a 1,1-alkyl substituted ethene generally favours the formation of an ozonide (a 1,2,4-trioxolane). Whereas the ozonolysis of a 1,1,2-alkyl substituted ethene also produces ozonide, a considerable amount of the ozonised products are oligomeric in nature. For example, the ozonolysis of 3-methylpent-2-ene in solution to high conversion in pentane yields oligomers with structural units derived from the fragmentation products of the primary ozonide (a 1,2,3-trioxolane) which are namely butanone carbonyl oxide and acetaldehyde; these can be characterised by electrospray ionisation mass spectroscopy (ESI-MS) under soft ionisation conditions. The predominant oligomers formed are rich in carbonyl oxide units (80 + mol%) and are cyclic in nature. A small proportion of the oligomers formed are open chain compounds with end groups that suggest that chain termination is brought about either by water or by hydrogen peroxide. Residual water in the solvent will react with the carbonyl oxides to produce 2-methoxybut-2-yl hydroperoxide, which we propose readily decomposes generating hydrogen peroxide. A significant yield of oligomers also is obtained from the ozonolysis of a 1,2-alkyl substituted ethene. The ozonolysis of trans-hex-2-ene in pentane yields oligomers containing up to four structural units and are predicted to be mainly cyclic.

4.
J Org Chem ; 69(21): 6967-73, 2004 Oct 15.
Article in English | MEDLINE | ID: mdl-15471440

ABSTRACT

The ozonolysis of tetramethylethylene (TME) in solution to high conversion in nonparticipating solvents at -60 degrees C yields predominantly oligoperoxides. For the first time, these products have been characterized using electrospray ionization mass spectrometry (ESI-MS) under soft ionization conditions. The predominant structure formed in reactions carried out in pentane (up to 2.0 M TME) is shown to be the cyclic hexamer of acetone carbonyl oxide (oligocarbonyl oxide with degree of polymerization, n = 6), but cyclic structures with n up to 19 are observed. A small proportion of the oligoperoxides formed are open-chain compounds with end groups that suggest that chain termination of oligocarbonyl oxides can occur through reaction with either water or hydrogen peroxide. Ozonolysis in dried butyl acetate similarly produces mainly cyclic oligoperoxides. However, ozonolyses carried out in undried butyl acetate yield mainly open-chain oligoperoxides, confirming that propagating carbonyl oxide chains are readily terminated by water. Relative amounts of the open-chain oligomers so-formed suggest that undried butyl acetate contains ca. 0.1% w/w water. The ozonolysis of TME in the participating solvent, methanol, at -60 degrees C yields 2-methoxyprop-2-yl hydroperoxide via reaction of acetone carbonyl oxide with methanol; no oligoperoxidic products are formed in this case.

SELECTION OF CITATIONS
SEARCH DETAIL
...