Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
New Phytol ; 234(2): 545-559, 2022 04.
Article in English | MEDLINE | ID: mdl-35092024

ABSTRACT

Meiotic recombination is a major evolutionary process generating genetic diversity at each generation in sexual organisms. However, this process is highly regulated, with the majority of crossovers lying in the distal chromosomal regions that harbor low DNA methylation levels. Even in these regions, some islands without recombination remain, for which we investigated the underlying causes. Genetic maps were established in two Brassica napus hybrids to detect the presence of such large nonrecombinant islands. The role played by DNA methylation and structural variations in this local absence of recombination was determined by performing bisulfite sequencing and whole genome comparisons. Inferred structural variations were validated using either optical mapping or oligo fluorescence in situ hybridization. Hypermethylated or inverted regions between Brassica genomes were associated with the absence of recombination. Pairwise comparisons of nine B. napus genome assemblies revealed that such inversions occur frequently and may contain key agronomic genes such as resistance to biotic stresses. We conclude that such islands without recombination can have different origins, such as DNA methylation or structural variations in B. napus. It is thus essential to take into account these features in breeding programs as they may hamper the efficient combination of favorable alleles in elite varieties.


Subject(s)
Brassica napus , Brassica napus/genetics , Chromosomes, Plant , Epigenomics , Genome, Plant , In Situ Hybridization, Fluorescence , Plant Breeding
2.
Biology (Basel) ; 10(8)2021 Aug 13.
Article in English | MEDLINE | ID: mdl-34440003

ABSTRACT

Meiotic recombination is the main tool used by breeders to generate biodiversity, allowing genetic reshuffling at each generation. It enables the accumulation of favorable alleles while purging deleterious mutations. However, this mechanism is highly regulated with the formation of one to rarely more than three crossovers, which are not randomly distributed. In this study, we showed that it is possible to modify these controls in oilseed rape (Brassica napus, AACC, 2n = 4x = 38) and that it is linked to AAC allotriploidy and not to polyploidy per se. To that purpose, we compared the frequency and the distribution of crossovers along A chromosomes from hybrids carrying exactly the same A nucleotide sequence, but presenting three different ploidy levels: AA, AAC and AACC. Genetic maps established with 202 SNPs anchored on reference genomes revealed that the crossover rate is 3.6-fold higher in the AAC allotriploid hybrids compared to AA and AACC hybrids. Using a higher SNP density, we demonstrated that smaller and numerous introgressions of B. rapa were present in AAC hybrids compared to AACC allotetraploid hybrids, with 7.6 Mb vs. 16.9 Mb on average and 21 B. rapa regions per plant vs. nine regions, respectively. Therefore, this boost of recombination is highly efficient to reduce the size of QTL carried in cold regions of the oilseed rape genome, as exemplified here for a QTL conferring blackleg resistance.

3.
New Phytol ; 230(5): 2072-2084, 2021 06.
Article in English | MEDLINE | ID: mdl-33638877

ABSTRACT

Allopolyploids have globally higher fitness than their diploid progenitors; however, by comparison, most resynthesized allopolyploids have poor fertility and highly unstable genome. Elucidating the evolutionary processes promoting genome stabilization and fertility is thus essential to comprehend allopolyploid success. Using the Brassica model, we mimicked the speciation process of a nascent allopolyploid species by resynthesizing allotetraploid Brassica napus and systematically selecting for euploid individuals over eight generations in four independent allopolyploidization events with contrasted genetic backgrounds, cytoplasmic donors, and polyploid formation type. We evaluated the evolution of meiotic behavior and fertility and identified rearrangements in S1 to S9 lineages to explore the positive consequences of euploid selection on B. napus genome stability. Recurrent selection of euploid plants for eight generations drastically reduced the percentage of aneuploid progenies as early as the fourth generation, concomitantly with a decrease in number of newly fixed homoeologous rearrangements. The consequences of homoeologous rearrangements on meiotic behavior and seed number depended strongly on the genetic background and cytoplasm donor. The combined use of both self-fertilization and recurrent euploid selection allowed identification of genomic regions associated with fertility and meiotic behavior, providing complementary evidence to explain B. napus speciation success.


Subject(s)
Brassica napus , Brassica , Aneuploidy , Brassica/genetics , Brassica napus/genetics , Genome, Plant/genetics , Polyploidy
5.
Front Plant Sci ; 9: 368, 2018.
Article in English | MEDLINE | ID: mdl-29628933

ABSTRACT

Meiotic crossovers (COs) are essential for proper chromosome segregation and the reshuffling of alleles during meiosis. In WT plants, the number of COs is usually small, which limits the genetic variation that can be captured by plant breeding programs. Part of this limitation is imposed by proteins like FANCM, the inactivation of which results in a 3-fold increase in COs in Arabidopsis thaliana. Whether the same holds true in crops needed to be established. In this study, we identified EMS induced mutations in FANCM in two species of economic relevance within the genus Brassica. We showed that CO frequencies were increased in fancm mutants in both diploid and tetraploid Brassicas, Brassica rapa and Brassica napus respectively. In B. rapa, we observed a 3-fold increase in the number of COs, equal to the increase observed previously in Arabidopsis. In B. napus we observed a lesser but consistent increase (1.3-fold) in both euploid (AACC) and allohaploid (AC) plants. Complementation tests in A. thaliana suggest that the smaller increase in crossover frequency observed in B. napus reflects residual activity of the mutant C copy of FANCM. Altogether our results indicate that the anti-CO activity of FANCM is conserved across the Brassica, opening new avenues to make a wider range of genetic diversity accessible to crop improvement.

6.
Genetics ; 206(3): 1361-1372, 2017 07.
Article in English | MEDLINE | ID: mdl-28533439

ABSTRACT

The effect of gene location within a crop genome on its transfer to a weed genome remains an open question for gene flow assessment. To elucidate this question, we analyzed advanced generations of intergeneric hybrids, derived from an initial pollination of known oilseed rape varieties (Brassica napus, AACC, 2n = 38) by a local population of wild radish (Raphanus raphanistrum, RrRr, 2n = 18). After five generations of recurrent pollination, 307 G5 plants with a chromosome number similar to wild radish were genotyped using 105 B. napus specific markers well distributed along the chromosomes. They revealed that 49.8% of G5 plants carried at least one B. napus genomic region. According to the frequency of B. napus markers (0-28%), four classes were defined: Class 1 (near zero frequency), with 75 markers covering ∼70% of oilseed rape genome; Class 2 (low frequency), with 20 markers located on 11 genomic regions; Class 3 (high frequency), with eight markers on three genomic regions; and Class 4 (higher frequency), with two adjacent markers detected on A10. Therefore, some regions of the oilseed rape genome are more prone than others to be introgressed into wild radish. Inheritance and growth of plant progeny revealed that genomic regions of oilseed rape could be stably introduced into wild radish and variably impact the plant fitness (plant height and seed number). Our results pinpoint that novel technologies enabling the targeted insertion of transgenes should select genomic regions that are less likely to be introgressed into the weed genome, thereby reducing gene flow.


Subject(s)
Brassica/genetics , Gene Flow , Genes, Plant , Raphanus/genetics , Genetic Fitness , Hybridization, Genetic , Plant Weeds/genetics
7.
PLoS Genet ; 13(5): e1006794, 2017 May.
Article in English | MEDLINE | ID: mdl-28493942

ABSTRACT

Meiotic recombination by crossovers (COs) is tightly regulated, limiting its key role in producing genetic diversity. However, while COs are usually restricted in number and not homogenously distributed along chromosomes, we show here how to disrupt these rules in Brassica species by using allotriploid hybrids (AAC, 2n = 3x = 29), resulting from the cross between the allotetraploid rapeseed (B. napus, AACC, 2n = 4x = 38) and one of its diploid progenitors (B. rapa, AA, 2n = 2x = 20). We produced mapping populations from different genotypes of both diploid AA and triploid AAC hybrids, used as female and/or as male. Each population revealed nearly 3,000 COs that we studied with SNP markers well distributed along the A genome (on average 1 SNP per 1.25 Mbp). Compared to the case of diploids, allotriploid hybrids showed 1.7 to 3.4 times more overall COs depending on the sex of meiosis and the genetic background. Most surprisingly, we found that such a rise was always associated with (i) dramatic changes in the shape of recombination landscapes and (ii) a strong decrease of CO interference. Hybrids carrying an additional C genome exhibited COs all along the A chromosomes, even in the vicinity of centromeres that are deprived of COs in diploids as well as in most studied species. Moreover, in male allotriploid hybrids we found that Class I COs are mostly responsible for the changes of CO rates, landscapes and interference. These results offer the opportunity for geneticists and plant breeders to dramatically enhance the generation of diversity in Brassica species by disrupting the linkage drag coming from limits on number and distribution of COs.


Subject(s)
Brassica/genetics , Crossing Over, Genetic , Genetic Variation , Meiosis/genetics , Brassica/growth & development , Genome, Plant , Polymorphism, Single Nucleotide , Polyploidy , Recombination, Genetic
8.
G3 (Bethesda) ; 7(2): 705-717, 2017 02 09.
Article in English | MEDLINE | ID: mdl-28007837

ABSTRACT

Allopolyploidy, which results from the merger and duplication of two divergent genomes, has played a major role in the evolution and diversification of flowering plants. The genomic changes that occur in resynthesized or natural neopolyploids have been extensively studied, but little is known about the effects of the reproductive mode in the initial generations that may precede its successful establishment. To truly reflect the early generations of a nascent polyploid, two resynthesized allotetraploid Brassica napus populations were obtained for the first time by open pollination. In these populations, we detected a much lower level of aneuploidy (third generation) compared with those previously published populations obtained by controlled successive selfing. We specifically studied 33 resynthesized B. napus individuals from our two open pollinated populations, and showed that meiosis was affected in both populations. Their genomes were deeply shuffled after allopolyploidization: up to 8.5 and 3.5% of the C and A subgenomes were deleted in only two generations. The identified deletions occurred mainly at the distal part of the chromosome, and to a significantly greater extent on the C rather than the A subgenome. Using Fluorescent In Situ Hybridization (BAC-FISH), we demonstrated that four of these deletions corresponded to fixed translocations (via homeologous exchanges). We were able to evaluate the size of the structural variations and their impact on the whole genome size, gene content, and allelic diversity. In addition, the evolution of fertility was assessed, to better understand the difficulty encountered by novel polyploid individuals before the putative formation of a novel stable species.


Subject(s)
Evolution, Molecular , Genome, Plant , Meiosis/genetics , Pollination/genetics , Brassica napus/genetics , Chromosomes, Plant/genetics , Fertility/genetics , Hybridization, Genetic , In Situ Hybridization, Fluorescence , Polyploidy
9.
New Phytol ; 213(4): 1886-1897, 2017 Mar.
Article in English | MEDLINE | ID: mdl-27575298

ABSTRACT

Constitutive genomes of allopolyploid species evolve throughout their life span. However, the consequences of long-term alterations on the interdependency between each original genome have not been established. Here, we attempted an approach corresponding to subgenome extraction from a previously sequenced natural allotetraploid, offering a unique opportunity to evaluate plant viability and structural evolution of one of its diploid components. We employed two different strategies to extract the diploid AA component of the Brassica napus variety 'Darmor' (AACC, 2n = 4x = 38) and we assessed the genomic structure of the latest AA plants obtained (after four to five rounds of selection), using a 60K single nucleotide polymorphism Illumina array. Only one strategy was successful and the diploid AA plants that were structurally characterized presented a lower proportion of the B. napus A subgenome extracted than expected. In addition, our analyses revealed that some genes lost in a polyploid context appeared to be compensated for plant survival, either by conservation of genomic regions from B. rapa, used in the initial cross, or by some introgressions from the B. napus C subgenome. We conclude that as little as c. 7500 yr of coevolution could lead to subgenome interdependency in the allotetraploid B. napus as a result of structural modifications.


Subject(s)
Brassica napus/genetics , Genome, Plant , Biological Evolution , Chromosomes, Plant/genetics , Diploidy , Hybridization, Genetic , Pollen/cytology , Polyploidy
10.
Plant Cell ; 26(4): 1448-1463, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24737673

ABSTRACT

Meiotic recombination is the fundamental process that produces balanced gametes and generates diversity within species. For successful meiosis, crossovers must form between homologous chromosomes. This condition is more difficult to fulfill in allopolyploid species, which have more than two sets of related chromosomes (homoeologs). Here, we investigated the formation, progression, and completion of several key hallmarks of meiosis in Brassica napus (AACC), a young polyphyletic allotetraploid crop species with closely related homoeologous chromosomes. Altogether, our results demonstrate a precocious and efficient sorting of homologous versus homoeologous chromosomes during early prophase I in two representative B. napus accessions that otherwise show a genotypic difference in the progression of homologous recombination. More strikingly, our detailed comparison of meiosis in near isogenic allohaploid and euploid plants showed that the mechanism(s) promoting efficient chromosome sorting in euploids is adjusted to promote crossover formation between homoeologs in allohaploids. This suggests that, in contrast to other polyploid species, chromosome sorting is context dependent in B. napus.

11.
Genetics ; 197(1): 273-83, 2014 May.
Article in English | MEDLINE | ID: mdl-24558262

ABSTRACT

Production of allohexaploid Brassica (2n = AABBCC) is a promising goal for plant breeders due to the potential for hybrid heterosis and useful allelic contributions from all three of the Brassica genomes present in the cultivated diploid (2n = AA, 2n = BB, 2n = CC) and allotetraploid (2n = AABB, 2n = AACC, and 2n = BBCC) crop species (canola, cabbages, mustards). We used high-throughput SNP molecular marker assays, flow cytometry, and fluorescent in situ hybridization (FISH) to characterize a population of putative allohexaploids derived from self-pollination of a hybrid from the novel cross (B. napus × B. carinata) × B. juncea to investigate whether fertile, stable allohexaploid Brassica can be produced. Allelic segregation in the A and C genomes generally followed Mendelian expectations for an F2 population, with minimal nonhomologous chromosome pairing. However, we detected no strong selection for complete 2n = AABBCC chromosome complements, with weak correlations between DNA content and fertility (r(2) = 0.11) and no correlation between missing chromosomes or chromosome segments and fertility. Investigation of next-generation progeny resulting from one highly fertile F2 plant using FISH revealed general maintenance of high chromosome numbers but severe distortions in karyotype, as evidenced by recombinant chromosomes and putative loss/duplication of A- and C-genome chromosome pairs. Our results show promise for the development of meiotically stable allohexaploid lines, but highlight the necessity of selection for 2n = AABBCC karyotypes.


Subject(s)
Alleles , Brassica/genetics , Chromosomes, Plant/genetics , Polyploidy , Brassica/cytology , Brassica/drug effects , Brassica/physiology , Chromosomes, Plant/drug effects , Colchicine/pharmacology , DNA, Plant/genetics , Fertility/drug effects , Fertility/genetics , Genome, Plant/genetics , Hybridization, Genetic , In Situ Hybridization, Fluorescence , Karyotyping , Meiosis/drug effects , Meiosis/genetics , Polymorphism, Single Nucleotide
12.
New Phytol ; 201(2): 645-656, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24117470

ABSTRACT

Recombination is a major mechanism generating genetic diversity, but the control of the crossover rate remains a key question. In Brassica napus (AACC, 2n = 38), we can increase the homologous recombination between A genomes in AAC hybrids. Hypotheses for this effect include the number of C univalent chromosomes, the ratio between univalents and bivalents and, finally, which of the chromosomes are univalents. To test these hypotheses, we produced AA hybrids with zero, one, three, six or nine additional C chromosomes and four different hybrids carrying 2n = 32 and 2n = 35 chromosomes. The genetic map lengths for each hybrid were established to compare their recombination rates. The rates were 1.4 and 2.7 times higher in the hybrids having C6 or C9 alone than in the control (0C). This enhancement reached 3.1 and 4.1 times in hybrids carrying six and nine C chromosomes, and it was also higher for each pair of hybrids carrying 2n = 32 or 2n = 35 chromosomes, with a dependence on which chromosomes remained as univalents. We have shown, for the first time, that the presence of one chromosome, C9 , affects significantly the recombination rate and reduces crossover interference. This result will have fundamental implications on the regulation of crossover frequency.


Subject(s)
Brassica napus/genetics , Chromosomes, Plant/metabolism , Homologous Recombination , Aneuploidy , Chromosome Pairing , Hybridization, Genetic , In Situ Hybridization, Fluorescence
13.
New Phytol ; 198(2): 593-604, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23384044

ABSTRACT

The role played by whole-genome duplication (WGD) in evolution and adaptation is particularly well illustrated in allopolyploids, where WGD is concomitant with interspecific hybridization. This 'Genome Shock', usually accompanied by structural and functional modifications, has been associated with the activation of transposable elements (TEs). However, the impact of allopolyploidy on TEs has been studied in only a few polyploid species, and not in Brassica, which has been marked by recurrent polyploidy events. Here, we developed sequence-specific amplification polymorphism (SSAP) markers for three contrasting TEs, and compared profiles between resynthesized Brassica napus allotetraploids and their diploid Brassica progenitors. To evaluate restructuring at TE insertion sites, we scored changes in SSAP profiles and analysed a large set of differentially amplified SSAP bands. No massive structural changes associated with the three TEs surveyed were detected. However, several transposition events, specific to the youngest TE originating from the B. oleracea genome, were identified. Our study supports the hypothesis that TE responses to allopolyploidy are highly specific. The changes observed in SSAP profiles lead us to hypothesize that they may partly result from changes in DNA methylation, questioning the role of epigenetics during the formation of a new allopolyploid genome.


Subject(s)
Brassica napus/genetics , DNA Transposable Elements/genetics , Mutagenesis, Insertional/genetics , Polyploidy , Base Sequence , Crosses, Genetic , Diploidy , Polymerase Chain Reaction , Polymorphism, Genetic , Reproducibility of Results
14.
New Phytol ; 198(3): 887-898, 2013 May.
Article in English | MEDLINE | ID: mdl-23406519

ABSTRACT

Phytopathogenic fungi frequently contain dispensable chromosomes, some of which contribute to host range or pathogenicity. In Leptosphaeria maculans, the stem canker agent of oilseed rape (Brassica napus), the minichromosome was previously suggested to be dispensable, without evidence for any role in pathogenicity. Using genetic and genomic approaches, we investigated the inheritance and molecular determinant of an L. maculans-Brassica rapa incompatible interaction. Single gene control of the resistance was found, while all markers located on the L. maculans minichromosome, absent in the virulent parental isolate, co-segregated with the avirulent phenotype. Only one candidate avirulence gene was identified on the minichromosome, validated by complementation experiments and termed AvrLm11. The minichromosome was frequently lost following meiosis, but the frequency of isolates lacking it remained stable in field populations sampled at a 10-yr time interval, despite a yearly sexual stage in the L. maculans life cycle. This work led to the cloning of a new 'lost in the middle of nowhere' avirulence gene of L. maculans, interacting with a B. rapa resistance gene termed Rlm11 and introgressed into B. napus. It demonstrated the dispensability of the L. maculans minichromosome and suggested that its loss generates a fitness deficit.


Subject(s)
Ascomycota/genetics , Ascomycota/pathogenicity , Brassica rapa/microbiology , Chromosomes, Fungal/genetics , Genes, Fungal , Host-Pathogen Interactions/genetics , Brassica napus/genetics , Brassica napus/microbiology , Brassica rapa/genetics , Cloning, Molecular , Crosses, Genetic , Disease Resistance/genetics , Meiosis , Plant Diseases/genetics , Plant Diseases/microbiology , Virulence/genetics
15.
Plant J ; 70(4): 691-703, 2012 May.
Article in English | MEDLINE | ID: mdl-22268419

ABSTRACT

Chromosome rearrangements are common, but their dynamics over time, mechanisms of occurrence and the genomic features that shape their distribution and rate are still poorly understood. We used allohaploid Brassica napus (AC, n = 19) as a model to analyze the effect of genomic features on the formation and diversity of meiotically driven chromosome rearrangements. We showed that allohaploid B. napus meiosis leads to extensive new structural diversity. Almost every allohaploid offspring carried a unique combination of multiple rearrangements throughout the genome, and was thus structurally differentiated from both its haploid parent and its sister plants. This large amount of genome reshuffling was remarkably well-tolerated in the heterozygous state, as neither male nor female fertility were strongly reduced, and meiosis behavior was normal in most cases. We also used a quantitative statistical model, which accounted for 75% of the observed variation in rearrangement rates, to show that the distribution of meiotically driven chromosome rearrangements was not random but was shaped by three principal genomic features. In descending order of importance, the rate of marker loss increased strongly with genetic distance from the centromere, the degree of collinearity between chromosomes, and the genome of origin (A < C). Overall, our results demonstrate that B. napus accumulates a large number of genetic changes, but these rearrangements are not randomly distributed in the genome. The structural genetic diversity produced by the allohaploid pathway and its role in the evolution of polyploid species compared to diploid meiosis are discussed.


Subject(s)
Brassica napus/genetics , Chromosomes, Plant/genetics , Gene Rearrangement , Genome, Plant/genetics , Brassica napus/classification , Chromosome Mapping , Crosses, Genetic , Diploidy , Evolution, Molecular , Fertility/genetics , Genetic Loci/genetics , Genetic Variation , Haploidy , Linkage Disequilibrium , Meiosis/genetics , Models, Genetic , Phylogeny , Polyploidy
16.
Chromosoma ; 120(6): 557-71, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21785942

ABSTRACT

The dynamics of genome modification that occurred from the initial hybridization event to the stabilization of allopolyploid species remains largely unexplored. Here, we studied inheritance and expression of rDNA loci in the initial generations of Brassica napus allotetraploids (2n = 38, AACC) resynthesized from Brassica oleracea (2n = 18, CC) and B. rapa (2n = 20, AA) and compared the patterns to natural forms. Starting already from F1 generation, there was a strong uniparental silencing of B. oleracea genes. The epigenetic reprogramming was accompanied with immediate condensation of C-genome nucleolar organizer region (NOR) and progressive transgeneration hypermethylation of polymerase I promoters, mainly at CG sites. No such changes were observed in the A-genome NORs. Locus loss and gains affecting mainly non-NOR loci after the first allotetraploid meiosis did not influence established functional status of NORs. Collectively, epigenetic and genetic modifications in synthetic lines resemble events that accompanied formation of natural allopolyploid species.


Subject(s)
Brassica napus/genetics , DNA, Plant/genetics , DNA, Ribosomal/genetics , Epigenomics , Gene Rearrangement , Nucleolus Organizer Region/genetics , Polyploidy , Brassica napus/metabolism , DNA Methylation , DNA, Plant/metabolism , DNA, Ribosomal/metabolism , Hybridization, Genetic , Meiosis , Nucleolus Organizer Region/metabolism
17.
Plant Cell ; 22(7): 2265-76, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20639447

ABSTRACT

Allopolyploid species contain more than two sets of related chromosomes (homoeologs) that must be sorted during meiosis to ensure fertility. As polyploid species usually have multiple origins, one intriguing, yet largely underexplored, question is whether different mechanisms suppressing crossovers between homoeologs may coexist within the same polyphyletic species. We addressed this question using Brassica napus, a young polyphyletic allopolyploid species. We first analyzed the meiotic behavior of 363 allohaploids produced from 29 accessions, which represent a large part of B. napus genetic diversity. Two main clear-cut meiotic phenotypes were observed, encompassing a twofold difference in the number of univalents at metaphase I. We then sequenced two chloroplast intergenic regions to gain insight into the maternal origins of the same 29 accessions; only two plastid haplotypes were found, and these correlated with the dichotomy of meiotic phenotypes. Finally, we analyzed genetic diversity at the PrBn locus, which was shown to determine meiotic behavior in a segregating population of B. napus allohaploids. We observed that segregation of two alleles at PrBn could adequately explain a large part of the variation in meiotic behavior found among B. napus allohaploids. Overall, our results suggest that repeated polyploidy resulted in different levels of crossover suppression between homoeologs in B. napus allohaploids.


Subject(s)
Brassica napus/genetics , Chromosomes, Plant , Crossing Over, Genetic , Haploidy , Polyploidy , Brassica napus/cytology , Meiosis
18.
Plant Cell ; 22(7): 2253-64, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20622148

ABSTRACT

Meiotic crossovers are necessary to generate balanced gametes and to increase genetic diversity. Even if crossover number is usually constrained, recent results suggest that manipulating karyotype composition could be a new way to increase crossover frequency in plants. In this study, we explored this hypothesis by analyzing the extent of crossover variation in a set of related diploid AA, allotriploid AAC, and allotetraploid AACC Brassica hybrids. We first used cytogenetic methods to describe the meiotic behavior of the different hybrids. We then combined a cytogenetic estimation of class I crossovers in the entire genome by immunolocalization of a key protein, MutL Homolog1, which forms distinct foci on meiotic chromosomes, with genetic analyses to specifically compare crossover rates between one pair of chromosomes in the different hybrids. Our results showed that the number of crossovers in the allotriploid AAC hybrid was higher than in the diploid AA hybrid. Accordingly, the allotetraploid AACC hybrid showed an intermediate behavior. We demonstrated that this increase was related to hybrid karyotype composition (diploid versus allotriploid versus allotetraploid) and that interference was maintained in the AAC hybrids. These results could provide another efficient way to manipulate recombination in traditional breeding and genetic studies.


Subject(s)
Brassica/genetics , Hybridization, Genetic , Brassica/cytology , Karyotyping , Meiosis
19.
Chromosome Res ; 18(6): 655-66, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20571876

ABSTRACT

Gene introgression into allopolyploid crop species from diploid or polyploid ancestors can be accomplished through homologous or homoeologous chromosome pairing during meiosis. We produced trigenomic Brassica interspecific hybrids (genome complements AABC, BBAC and CCAB) from the amphidiploid species Brassica napus (AACC), Brassica juncea (AABB) and Brassica carinata (BBCC) in order to test whether the structure of each genome affects frequencies of homologous and homoeologous (both allosyndetic and autosyndetic) pairing during meiosis. AABC hybrids produced from three genotypes of B. napus were included to assess the genetic control of homoeologous pairing. Multi-colour fluorescent in situ hybridisation was used to quantify homologous pairing (e.g. A-genome bivalents in AABC), allosyndetic associations (e.g. B-C in AABC) and autosyndetic associations (e.g. B-B in AABC) at meiosis. A high percentage of homologous chromosomes formed pairs (97.5-99.3%), although many pairs were also involved in autosyndetic and allosyndetic associations. Allosyndesis was observed most frequently as A-C genome associations (mean 4.0 per cell) and less frequently as A-B genome associations (0.8 per cell) and B-C genome associations (0.3 per cell). Autosyndesis occurred most frequently in the haploid A genome (0.75 A-A per cell) and least frequently in the haploid B genome (0.13 B-B per cell). The frequency of C-C autosyndesis was greater in BBAC hybrids (0.75 per cell) than in any other hybrid. The frequency of A-B, A-C and B-C allosyndesis was affected by the genomic structure of the trigenomic hybrids. Frequency of allosyndesis was also influenced by the genotype of the B. napus paternal parent for the three AABC (B. juncea × B. napus) hybrid types. Homoeologous pairing between the Brassica A, B and C genomes in interspecific hybrids may be influenced by complex interactions between genome structure and allelic composition.


Subject(s)
Brassica/genetics , Chromosomes, Plant/genetics , Genome, Plant , Recombination, Genetic , Alleles , Chimera/genetics , Chromosome Pairing , Hybridization, Genetic , Meiosis , Polyploidy
20.
New Phytol ; 185(1): 285-99, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19814776

ABSTRACT

It has frequently been hypothesized that quantitative resistance increases the durability of qualitative (R-gene mediated) resistance but supporting experimental evidence is rare. To test this hypothesis, near-isogenic lines with/without the R-gene Rlm6 introduced into two Brassica napus cultivars differing in quantitative resistance to Leptosphaeria maculans were used in a 5-yr field experiment. Recurrent selection of natural fungal populations was done annually on each of the four plant genotypes, using crop residues from each genotype to inoculate separately the four series of field trials for five consecutive cropping seasons. Severity of phoma stem canker was measured on each genotype and frequencies of avirulence alleles in L. maculans populations were estimated. Recurrent selection of virulent isolates by Rlm6 in a susceptible background rendered the resistance ineffective by the third cropping season. By contrast, the resistance was still effective after 5 yr of selection by the genotype combining this gene with quantitative resistance. No significant variation in the performance of quantitative resistance alone was noted over the course of the experiment. We conclude that quantitative resistance can increase the durability of Rlm6. We recommend combining quantitative resistance with R-gene mediated resistance to enhance disease control and crop production.


Subject(s)
Ascomycota/genetics , Ascomycota/pathogenicity , Brassica napus/genetics , Brassica napus/microbiology , Genes, Plant , Plant Diseases/genetics , Plant Diseases/microbiology , Alleles , Carrier Proteins/genetics , Crops, Agricultural/genetics , Crops, Agricultural/microbiology , Genotype
SELECTION OF CITATIONS
SEARCH DETAIL
...