Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev E Stat Nonlin Soft Matter Phys ; 85(6 Pt 1): 061704, 2012 Jun.
Article in English | MEDLINE | ID: mdl-23005111

ABSTRACT

The effect of director pretilt on the twist magnetic Fréedericksz transition of nematics was investigated in a planar cell. The director configuration was calculated as a function of magnetic inductance. The dielectric and optical response of the nematic liquid crystal was numerically modeled. A dielectric measurement method for determining the elastic constant K_{22} is presented. The influence of the conditions for the Mauguin effect is discussed. The theoretical predictions were confirmed by our experiments. Experimental data for all elastic constants of a bent-core nematic material are presented and discussed.


Subject(s)
Crystallization/methods , Liquid Crystals/chemistry , Materials Testing/methods , Models, Chemical , Models, Molecular , Computer Simulation
2.
J Phys Condens Matter ; 20(20): 204123, 2008 May 21.
Article in English | MEDLINE | ID: mdl-21694252

ABSTRACT

In this work we describe the observations of structural transitions in ferronematics based on the thermotropic nematics 6CHBT (4-trans-4'-n-hexyl-cyclohexyl-isothiocyanato-benzene). The ferronematic droplets were observed in solutions of nematogenic 6CHBT dissolved in phenyl isocyanate and doped with fine magnetic particles. The phase diagram of the transitions from the isotropic phase to the nematic phase via a droplet state was found. Magneto-dielectric measurements of various structural transitions in this new system enabled us to estimate the type of anchoring of the nematic molecules on the magnetic particle surfaces in the droplets.

3.
Phys Rev Lett ; 97(15): 157802, 2006 Oct 13.
Article in English | MEDLINE | ID: mdl-17155363

ABSTRACT

Flexoelectricity is a coupling between orientational deformation and electric polarization. We present a direct method for measuring the flexoelectric coefficients of nematic liquid crystals (NLCs) via the electric current produced by periodic mechanical flexing of the NLC's bounding surfaces. This method is suitable for measuring the response of bent-core liquid crystals, which are expected to demonstrate a much larger flexoelectric effect than traditional, calamitic liquid crystals. Our results reveal that not only is the bend flexoelectric coefficient of bent-core NLCs gigantic (more than 3 orders of magnitude larger than in calamitics) but also it is much larger than would be expected from microscopic models based on molecular geometry. Thus, bent-core nematic materials can form the basis of a technological breakthrough for conversion between mechanical and electrical energy.

4.
Phys Rev E Stat Nonlin Soft Matter Phys ; 72(4 Pt 1): 041712, 2005 Oct.
Article in English | MEDLINE | ID: mdl-16383407

ABSTRACT

We characterize three nonstandard electrohydrodynamic instabilities in nematic liquid crystals composed of bent-core molecules. In addition to their shape, another important attribute of this material is that the anisotropy in the electrical conductivity changes sign as the frequency of the applied electric field changes. These instabilities do not appear to fit within the standard model for electroconvection. The first instability creates a pattern with stripes parallel to the initial director orientation, with a wavelength about equal to the separation of the cell plates. The next is the previously reported prewavy instability. The third instability is optically and dynamically identical to the prewavy instability, but is distinguished by different threshold behavior.

5.
Article in English | MEDLINE | ID: mdl-11046364

ABSTRACT

We present the first quantitative verification of an amplitude description for systems with (nearly) spontaneously broken isotropy, in particular for the recently discovered abnormal-roll states. We also obtain a conclusive picture of the three-dimensional director configuration in a spatial period doubling phenomenon involving disclination loops. The first observation of two Lifshitz frequencies in electroconvection is reported.

SELECTION OF CITATIONS
SEARCH DETAIL
...