Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Toxics ; 11(11)2023 Nov 11.
Article in English | MEDLINE | ID: mdl-37999573

ABSTRACT

Respiratory diseases have been proven to be directly related to air pollutants. Xuanwei, located in South China, has been known to have the highest mortality rate for lung cancer in China because of the air pollutants emitted through local coal combustion. However, the mechanism of lung cancer induced by air pollutants is not clear. Based on the fact that a large number of iron-bearing mineral particles was found in Xuanwei coal combustion particles, the iron-containing particles were hypothesized to play important roles in the pathogenesis of the high incidence rate of lung cancer in this area. In this study, raw coal samples were collected from a coal mine in the Xuanwei area. Size-resolved particles emitted from the raw coal samples were collected using an Anderson high-volume sampler. Mineralogical characterization and an assessment of the oxidative potential of the iron-containing particles were conducted using cutting-edge technologies, and the biological activity of the particles were evaluated via DTT assay. Our data showed that the iron-containing minerals accounted for more than 10% of the measured particles emitted from Xuanwei coal combustion samples. The content analysis of ·OH generated from Xuanwei coal combustion particles showed that ·OH content was dependent on the size of particles in the surrogated lung fluid. The concentration of ·OH increased as the particle size decreased. The DTT assay data further demonstrated that when the mass concentration of dissolved irons increased, the oxidation potential of the particles increased. The highest proportion of divalent iron in the total dissolved iron was found in the submicron particles in low pH solution(pH = 1), which indicated that the oxidative potential induced by submicron particles was stronger than that induced by coarse particles and fine particles. Armed with the above data, the toxicological mechanism of the iron-containing mineral particles can be investigated further.

2.
Environ Pollut ; 334: 122134, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37414123

ABSTRACT

Mineral particles in air could provide atmospheric chemical reaction interface for gaseous substances and participate in atmospheric chemical reaction process, and affecting the status and levels of gaseous pollutants in air. However, differences of the heterogenous reaction on the surface minerals particles are not very clear. Considering main mineral composition of ambient particles was from dust emission, therefore, typical clay minerals (chlorite, illite) and desert particles (Taklimakan Desert) were selected to analysize chemical reaction of NO2, one of major gaseous pollutants, on mineral particles by using of In-situ DRIFTS (diffuse reflectance infrared Fourier transform spectroscopy) under different condition. And In situ near-ambient pressure X-ray photoelectron spectroscopy (In situ NAP-XPS) was employed to investigate iron (one of the major metals) species variation on the surface of mineral dust particles during the heterogeneous reactions. Our data show that humidity controlled by deuterium oxide (D2O) has a greater effect on chemical reactions compared to light and temperature. Under dry conditions, the amount of heterogeneous reaction products of NO2 on the particles shows Xiaotang dust > chlorite > illite > Tazhong dust regardless of dark or light conditions. In contrast, under humidity conditions, the order of nitrate product quantity under moderate conditions was chlorite > illite > Xiaotang dust > Tazhong dust. In situ NAP-XPS results demonstrate that specie variation of the Fe could promote the heterogenous reactions. These data could provide useful information for understanding the formation mechanism of nitrate aerosols and removal of nitrogen oxides in the atmosphere.


Subject(s)
Dust , Environmental Pollutants , Dust/analysis , Clay , Nitrogen Dioxide/chemistry , Nitrates , Minerals/chemistry , Gases , Aerosols/chemistry
3.
Environ Anal Health Toxicol ; 34(4): e2019011-0, 2019 Dec.
Article in English | MEDLINE | ID: mdl-32008304

ABSTRACT

Polycyclic aromatic hydrocarbons (PAHs) exposure is among the leading air pollutants associated with diverse adverse health effects due to their persistent, bio-accumulative and toxic characteristics. Children are most affected by these pollutants, yet studies directly related children to these pollutants are scarce in Nigeria. In this study, blood and urine from 36 children between the ages 4-14 years were collected as per sterile procedures by a licensed phlebotomist from the antecubital fossa into BD vacutainer tubes® while a mid-stream urine sample into acid-washed 120 mL BD vacutainer urine cups and stored in refrigerator at -4˚C for 6 hours, then each 5 mL was extracted with 10 mL of pentane and analyzed for 15 PAHs using GC-MS. Results revealed that PAHs concentrations (53.48 to 70.8 µg/dL) in blood was lower than in urine (94.98 to 115.04 µg/dL). Mean values had no significant (p>0.5) differences between schools, possibly due to the fact that all schools were experiencing similar anthropogenic disturbances. At 5% level of significance, positive and strong correlationships (r=0.83, r=0.73) were observed for fluorene-fluoranthene (FLa) and benzo (a) anthracene-FLa respectively in blood samples. Two and three rings PAHs had generally low concentrations in both blood and urine. Despite being the most distributed compound, the concentration of dibenzo (a,h) anthracene was highest for urine than in blood. Urine PAHs showed higher concentration of carcinogenic PAHs than blood. Elimination ratios (ER) such as for acenaphthene (0.06) and anthracene (Ant; 0.11) were considered low while values such as for FLa (1.36) and indeno [1, 2, 3-cd] pyrene (1.55) were considered high ER. Trends in elimination ratios showed close similarity. In conclusion there was elevated PAHs in blood and urine of children with consequent high carcinogenic and then non-carcinogenic risks. This research is significant in setting the stage for more detailed work at same time alerting policy makers on the need for urgent mitigation steps that will reduce children exposure to this class of dangerous pollutants.

4.
Environ Anal Health Toxicol ; 34(4): e2019012-0, 2019 Dec.
Article in English | MEDLINE | ID: mdl-32008305

ABSTRACT

The abundance, distribution and composition of marine debris ( > 5 cm) and small microplastics (11 µm) from five rivers in South Eastern Nigeria was investigated. This study provided the first assessment of the type and quantity of marine litter and microplastics in Nigeria. A total of 3,487 macrodebris items/m2 were counted with the following distribution: plastics (59%), metal (10%), cloth (7%), paper/cardboard (7%), rubber (7%), glass/ceramics (5%), medical and agro-based waste (3%), and wood (2%). The cleanliness of the river assessed with clean coast index ranged from "very clean" to "extremely dirty". Microplastics abundance ranged from 440 to 1,556 particles/L, with high accumulation at downstream. Fragment shape was most abundant while fiber and film followed. The distribution of plastic types was PET (29%), PE (22%), PVC (16%), PP (14%), and others (6%). Significant relationship was found between the total abundances of microplastics and different macrodebris groups suggesting that microplastics were abundant in areas where the macrodebris abundance was high. Our results provide baseline information for future assessments. Management actions should focus on input prevention including proper waste management, recycling of plastics, and strict penalties for illegal dumping of wastes.

SELECTION OF CITATIONS
SEARCH DETAIL
...