Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Science ; 310(5746): 258-64, 2005 Oct 14.
Article in English | MEDLINE | ID: mdl-16150978

ABSTRACT

Deep Impact collided with comet Tempel 1, excavating a crater controlled by gravity. The comet's outer layer is composed of 1- to 100-micrometer fine particles with negligible strength (<65 pascals). Local gravitational field and average nucleus density (600 kilograms per cubic meter) are estimated from ejecta fallback. Initial ejecta were hot (>1000 kelvins). A large increase in organic material occurred during and after the event, with smaller changes in carbon dioxide relative to water. On approach, the spacecraft observed frequent natural outbursts, a mean radius of 3.0 +/- 0.1 kilometers, smooth and rough terrain, scarps, and impact craters. A thermal map indicates a surface in equilibrium with sunlight.


Subject(s)
Meteoroids , Jupiter , Organic Chemicals/analysis , Spectrum Analysis
2.
Science ; 292(5520): 1348-53, 2001 May 18.
Article in English | MEDLINE | ID: mdl-11359005

ABSTRACT

We analyzed photometric measurements and images of comet C/LINEAR before perihelion and after its breakup. Results from our photometry data include a lower limit of 0.44 kilometer for the radius of the nucleus before breakup, and a determination that it was depleted in carbon-chain molecules relative to most other comets. Our imaging and modeling results, which include a constraint on the rotational state of the nucleus, indicate that the disintegration likely started on 18 or 19 July 2000. The total mass detectable in the dust tail after the breakup was 3 x 10(8) kilograms, comparable to one of the fragments in the Hubble Space Telescope images; we therefore infer that most of the comet's original mass is hidden in remnants between 1 millimeter and 50 meters in diameter.

SELECTION OF CITATIONS
SEARCH DETAIL
...