Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Phys Rev Lett ; 112(7): 073602, 2014 Feb 21.
Article in English | MEDLINE | ID: mdl-24579597

ABSTRACT

Squeezed vacuum states constitute a particularly useful resource in quantum information as well as in quantum metrology. The frequency conversion of these states is important to provide the bridge between different wavelengths within a sequence of downstream applications and also to provide a way for squeezed-state generation at so-far inaccessible wavelengths. Here we demonstrate the external quantum up-conversion of carrier-light-free squeezed vacuum states for the first time. Our result proves that nondegenerate sum-frequency generation preserves the coherences that are present between photon pairs and higher-order photon pairs of the squeezed input state.

2.
Opt Express ; 21(9): 11546-53, 2013 May 06.
Article in English | MEDLINE | ID: mdl-23670011

ABSTRACT

Continuous variable entanglement is a fundamental resource for many quantum information tasks. Important protocols like superactivation of zero-capacity channels and finite-size quantum cryptography that provides security against most general attacks, require about 10 dB two-mode squeezing. Additionally, stable phase control mechanisms are necessary but are difficult to achieve because the total amount of optical loss to the entangled beams needs to be small. Here, we experimentally demonstrate a control scheme for two-mode squeezed vacuum states at the telecommunication wavelength of 1550 nm. Our states exhibited an Einstein-Podolsky-Rosen covariance product of 0.0309 ± 0.0002, where 1 is the critical value, and a Duan inseparability value of 0.360 ± 0.001, where 4 is the critical value. The latter corresponds to 10.45 ± 0.01 dB which reflects the average non-classical noise suppression of the two squeezed vacuum states used to generate the entanglement. With the results of this work demanding quantum information protocols will become feasible.


Subject(s)
Light , Models, Theoretical , Scattering, Radiation , Telecommunications , Computer Simulation , Feedback , Quantum Theory , Vacuum
3.
Sensors (Basel) ; 13(1): 565-73, 2013 Jan 04.
Article in English | MEDLINE | ID: mdl-23291574

ABSTRACT

The efficient generation of second-harmonic light and squeezed light requires non-linear crystals that have low absorption at the fundamental and harmonic wavelengths. In this work the photo-thermal self-phase modulation technique is exploited to measure the absorption coefficient of periodically poled potassium titanyl phosphate (PPKTP) at 1,550 nm and 775 nm. The measurement results are (84±40) ppm/cm and (127±24) ppm/cm, respectively. We conclude that the performance of state-of-the-art frequency doubling and squeezed light generation in PPKTP is not limited by absorption.

4.
Phys Rev Lett ; 111(23): 230505, 2013 Dec 06.
Article in English | MEDLINE | ID: mdl-24476242

ABSTRACT

Distribution of entanglement between macroscopically separated parties is crucial for future quantum information networks. Surprisingly, it has been theoretically shown that two distant systems can be entangled by sending a third system that is not entangled with either of them. Here, we experimentally distribute entanglement and successfully prove that our transmitted light beam is indeed not entangled with the parties' local systems. Our work demonstrates an unexpected variant of entanglement distribution and improves the understanding necessary to engineer multipartite quantum networks.

5.
Opt Lett ; 37(12): 2367-9, 2012 Jun 15.
Article in English | MEDLINE | ID: mdl-22739910

ABSTRACT

Squeezed states can be employed for entanglement-based continuous-variable quantum key distribution, where the secure key rate is proportional to the bandwidth of the squeezing. We produced a nonclassical cw laser field at the telecommunication wavelength of 1550 nm, which showed squeezing over a bandwidth of more than 2 GHz. The experimental setup used parametric downconversion via a periodically poled potassium titanyl phosphate crystal. We did not use any resonant enhancement for the fundamental wavelength, which should in principle allow a production of squeezed light over the full phase-matching bandwidth of several nanometers. We measured the squeezing to be up to 0.3 dB below the vacuum noise from 50 MHz to 2 GHz limited by the measuring bandwidth of the homodyne detector. The squeezing strength was possibly limited by thermal lensing inside the nonlinear crystal.

6.
Opt Lett ; 36(17): 3467-9, 2011 Sep 01.
Article in English | MEDLINE | ID: mdl-21886246

ABSTRACT

We report on the observation of high-efficiency frequency doubling of 1550 nm continuous-wave laser light in a nonlinear cavity containing a periodically poled potassium titanyl phosphate crystal (PPKTP). The fundamental field had a power of 1.10 W and was converted into 1.05 W at 775 nm, yielding a total external conversion efficiency of 95±1%. The latter value is based on the measured depletion of the fundamental field being consistent with the absolute values derived from numerical simulations. According to our model, the conversion efficiency achieved was limited by the nonperfect mode matching into the nonlinear cavity and by the nonperfect impedance matching for the maximum input power available. Our result shows that cavity-assisted frequency conversion based on PPKTP is well suited for low-decoherence frequency conversion of quantum states of light.

7.
Opt Express ; 19(25): 25763-72, 2011 Dec 05.
Article in English | MEDLINE | ID: mdl-22273968

ABSTRACT

Continuous-wave squeezed states of light at the wavelength of 1550 nm have recently been demonstrated, but so far the obtained factors of noise suppression still lag behind today's best squeezing values demonstrated at 1064 nm. Here we report on the realization of a half-monolithic nonlinear resonator based on periodically-poled potassium titanyl phosphate which enabled the direct detection of up to 12.3 dB of squeezing at 5 MHz. Squeezing was observed down to a frequency of 2 kHz which is well within the detection band of gravitational wave interferometers. Our results suggest that a long-term stable 1550 nm squeezed light source can be realized with strong squeezing covering the entire detection band of a 3rd generation gravitational-wave detector such as the Einstein Telescope.


Subject(s)
Artifacts , Computer-Aided Design , Gravitation , Lenses , Models, Theoretical , Optical Devices , Telescopes , Computer Simulation , Equipment Design , Equipment Failure Analysis , Light , Quantum Theory , Scattering, Radiation
8.
Phys Rev Lett ; 104(25): 251102, 2010 Jun 25.
Article in English | MEDLINE | ID: mdl-20867358

ABSTRACT

Only a few years ago, it was realized that the zero-area Sagnac interferometer topology is able to perform quantum nondemolition measurements of position changes of a mechanical oscillator. Here, we experimentally show that such an interferometer can also be efficiently enhanced by squeezed light. We achieved a nonclassical sensitivity improvement of up to 8.2 dB, limited by optical loss inside our interferometer. Measurements performed directly on our squeezed-light laser output revealed squeezing of 12.7 dB. We show that the sensitivity of a squeezed-light enhanced Sagnac interferometer can surpass the standard quantum limit for a broad spectrum of signal frequencies without the need for filter cavities as required for Michelson interferometers. The Sagnac topology is therefore a powerful option for future gravitational-wave detectors, such as the Einstein Telescope, whose design is currently being studied.

9.
Opt Lett ; 35(10): 1665-7, 2010 May 15.
Article in English | MEDLINE | ID: mdl-20479843

ABSTRACT

The injection of squeezed light can be used to improve the sensitivity of an interferometer beyond the limit imposed by the zero-point fluctuation of the electromagnetic field. Here, we report on the realization of such a quantum-enhanced interferometer with a fiber-based Sagnac topology. Continuous wave squeezed states at 1550 nm with a noise reduction of 6.4 dB below shot noise were produced by type I optical parametric amplification and subsequently injected into the dark port of the interferometer. A reduction of the interferometer shot noise by 4.5 dB was observed, and the enhancement of the signal-to-noise ratio for a phase modulation signal generated within the interferometer could be demonstrated. We achieved a 95% fiber transmission for the squeezed states, which suggests that corresponding fiber-based quantum metrology and communication systems are feasible.

10.
Opt Lett ; 34(7): 1060-2, 2009 Apr 01.
Article in English | MEDLINE | ID: mdl-19340219

ABSTRACT

We report on the generation of cw squeezed vacuum states of light at the telecommunication wavelength of 1550 nm. The squeezed vacuum states were produced by type I optical parametric amplification in a standing-wave cavity built around a periodically poled potassium titanyl phosphate crystal. A nonclassical noise reduction of 5.3 dB below the shot noise was observed by means of balanced homodyne detection.

SELECTION OF CITATIONS
SEARCH DETAIL
...