Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 28(24): 36361-36379, 2020 Nov 23.
Article in English | MEDLINE | ID: mdl-33379731

ABSTRACT

A stepwise angular spectrum method (SASM) for curved interfaces is presented to calculate the wave propagation in planar lens-like integrated optical structures based on photonic slab waveguides. The method is derived and illustrated for an effective 2D setup first and then for 3D slab waveguide lenses. We employ slab waveguides of different thicknesses connected by curved surfaces to realize a lens-like structure. To simulate the wave propagation in 3D including reflection and scattering losses, the stepwise angular spectrum method is combined with full vectorial finite element computations for subproblems with lower complexity. Our SASM results show excellent agreement with rigorous numerical simulations of the full structures with a substantially lower computational effort and can be utilized for the simulation-based design and optimization of complex and large scale setups.

2.
Opt Express ; 27(7): 9313-9320, 2019 Apr 01.
Article in English | MEDLINE | ID: mdl-31045084

ABSTRACT

A rectangular dielectric strip at some distance above an optical slab waveguide is being considered, for evanescent excitation of the strip through the semi-guided waves supported by the slab, at specific oblique angles. The 2.5-D configuration shows resonant transmission properties with respect to variations of the angle of incidence, or of the excitation frequency, respectively. The strength of the interaction can be controlled by the gap between strip and slab. For increasing distance, our simulations predict resonant states with unit extremal reflectance of an angular or spectral width that tends to zero, i.e. resonances with a Q-factor that tends to infinity, while the resonance position approaches the level of the guided mode of the strip. This exceptionally simple system realizes what might be termed a "bound state coupled to the continuum".

3.
Opt Express ; 26(14): 18621-18632, 2018 Jul 09.
Article in English | MEDLINE | ID: mdl-30114038

ABSTRACT

Oblique propagation of semi-guided waves across slab waveguide structures with bent corners is investigated. A critical angle can be defined beyond which all radiation losses are suppressed. Additionally an increase of the curvature radius of the bends also leads to low-loss configurations for incidence angles below that critical angle. A combination of two bent corner systems represents a step-like structure, behaving like a Fabry-Perot interferometer, with two partial reflectors separated by the vertical height between the horizontal slabs. We numerically analyse typical high-index-contrast Si/SiO2 structures for their reflectance and transmittance properties. When increasing the curvature radius the resonant effect becomes less relevant such that full transmittance is reached with less critical conditions on the vertical distance or the incidence angle. For practical interest 3-D problems are considered, where the structures are excited by the fundamental mode of a wide, shallow rib waveguide. High transmittance levels can be observed also for these 3-D configurations depending on the width of the rib.

SELECTION OF CITATIONS
SEARCH DETAIL
...