Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 23(10)2022 May 11.
Article in English | MEDLINE | ID: mdl-35628155

ABSTRACT

Vibrational spectroscopy can detect characteristic biomolecular signatures and thus has the potential to support diagnostics. Fabry disease (FD) is a lipid disorder disease that leads to accumulations of globotriaosylceramide in different organs, including the heart, which is particularly critical for the patient's prognosis. Effective treatment options are available if initiated at early disease stages, but many patients are late- or under-diagnosed. Since Coherent anti-Stokes Raman (CARS) imaging has a high sensitivity for lipid/protein shifts, we applied CARS as a diagnostic tool to assess cardiac FD manifestation in an FD mouse model. CARS measurements combined with multivariate data analysis, including image preprocessing followed by image clustering and data-driven modeling, allowed for differentiation between FD and control groups. Indeed, CARS identified shifts of lipid/protein content between the two groups in cardiac tissue visually and by subsequent automated bioinformatic discrimination with a mean sensitivity of 90-96%. Of note, this genotype differentiation was successful at a very early time point during disease development when only kidneys are visibly affected by globotriaosylceramide depositions. Altogether, the sensitivity of CARS combined with multivariate analysis allows reliable diagnostic support of early FD organ manifestation and may thus improve diagnosis, prognosis, and possibly therapeutic monitoring of FD.


Subject(s)
Fabry Disease , Animals , Early Diagnosis , Fabry Disease/diagnostic imaging , Humans , Lipids , Mice , Microscopy/methods , Spectrum Analysis, Raman/methods
2.
BMC Plant Biol ; 18(1): 275, 2018 Nov 12.
Article in English | MEDLINE | ID: mdl-30419820

ABSTRACT

BACKGROUND: Cannabis possesses a rich spectrum of phytochemicals i.e. cannabinoids, terpenes and phenolic compounds of industrial and medicinal interests. Most of these high-value plant products are synthesised in the disk cells and stored in the secretory cavity in glandular trichomes. Conventional trichome analysis was so far based on optical microscopy, electron microscopy or extraction based methods that are either limited to spatial or chemical information. Here we combine both information to obtain the spatial distribution of distinct secondary metabolites on a single-trichome level by applying Coherent anti-Stokes Raman scattering (CARS), a microspectroscopic technique, to trichomes derived from sepals of a drug- and a fibre-type. RESULTS: Hyperspectral CARS imaging in combination with a nonlinear unmixing method allows to identify and localise Δ9-tetrahydrocannabinolic acid (THCA) in the secretory cavity of drug-type trichomes and cannabidiolic acid (CBDA)/myrcene in the secretory cavity of fibre-type trichomes, thus enabling an easy discrimination between high-THCA and high-CBDA producers. A unique spectral fingerprint is found in the disk cells of drug-type trichomes, which is most similar to cannabigerolic acid (CBGA) and is not found in fibre-type trichomes. Furthermore, we differentiate between different cell types by a combination of CARS with simultaneously acquired two-photon fluorescence (TPF) of chlorophyll a from chloroplasts and organic fluorescence mainly arising from cell walls enabling 3D visualisation of the essential oil distribution and cellular structures. CONCLUSION: Here we demonstrate a label-free and non-destructive method to analyse the distribution of secondary metabolites and distinguish between different cell and chemo-types with high spatial resolution on a single trichome. The record of chemical fingerprints of single trichomes offers the possibility to optimise growth conditions as well as guarantee a direct process control for industrially cultivated medicinal Cannabis plants. Moreover, this method is not limited to Cannabis related issues but can be widely implemented for optimising and monitoring all kinds of natural or biotechnological production processes with simultaneous spatial and chemical information.


Subject(s)
Cannabinoids/chemistry , Cannabis/chemistry , Oils, Volatile/metabolism , Spectrum Analysis, Raman/methods , Trichomes/chemistry , Acyclic Monoterpenes , Alkenes/chemistry , Alkenes/metabolism , Cannabinoids/metabolism , Dronabinol/chemistry , Dronabinol/metabolism , Imaging, Three-Dimensional , Microscopy, Electron, Scanning , Monoterpenes/chemistry , Monoterpenes/metabolism , Plants, Medicinal , Secondary Metabolism , Terpenes/chemistry , Terpenes/metabolism
3.
J Toxicol Environ Health A ; 80(23-24): 1242-1258, 2017.
Article in English | MEDLINE | ID: mdl-28880814

ABSTRACT

Effluents from municipal wastewater treatment plants (WWTPs) are known to be point sources of micropollutants for surface waters. The aim of this study was to examine a reconstructed full-scale ozonation equipped with a pump-injector system for ozone (O3) dosage and a fluidized moving-bed reactor as biological posttreatment at a municipal WWTP utilizing an effect-directed approach. This approach consists of chemical analysis in combination with toxicological tests for the assessment of treatment efficiency of the plant. Chemical analysis showed elimination rates > 80% for pharmaceuticals and industrial chemicals. Analysis of endocrine disruptors was limited due to substance concentrations below the limit of detection (LOD). Estrogenic activity was detected by the Arxula Adeninivorans yeast estrogen screen (A-YES) at low concentrations (pg to ng EEQ/l range). Estrogenic activity was reduced by more than 90% after ozonation. In contrast, androgenic activity (measured in the Adeninivorans yeast androgen screen, A-YAS) was still found after O3 treatment and after biological posttreatment, which is consistent with the data obtained by chemical analysis. Furthermore, no marked genotoxic or cytotoxic effects were observed after ozonation using the alkaline comet and 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromid (MTT) assays, respectively. Results suggest that the applied specific O3 dose of 0.4 mgO3/mgDOC is a safe operation setup in terms of toxicologically relevant transformation products. In addition, no adverse effects on primary producers, as evidenced by algae growth inhibition tests, were detected. The monitored biofilm growth in the biological posttreatment exhibited a steady state after one month. Based on computational fluid dynamics (CFD) simulations and biomass, one might conclude that O3 did not apparently enter biological posttreatment to a great extent and that hydraulic retention time in the O3 reactor was sufficient. Our data demonstrate the effectiveness of a full-scale O3 treatment in combination with a fluidized moving-bed reactor as biological posttreatment for the reduction of a majority of micropollutants without the release of relevant toxic transformation products as assessed by a chemical and toxicity-based approach.


Subject(s)
Endocrine Disruptors/analysis , Ozone/chemistry , Waste Disposal, Fluid/methods , Wastewater/analysis , Water Pollutants, Chemical/analysis , Environmental Monitoring , Yeasts/chemistry
4.
Sci Total Environ ; 537: 129-38, 2015 Dec 15.
Article in English | MEDLINE | ID: mdl-26282747

ABSTRACT

Chile is the second largest producer of salmonids worldwide. The first step in the production of salmonids takes place in land-based aquacultures. However, the effects of the discharge from these aquacultures on stream dissolved organic matter (DOM) content, molecular composition and degradability are unknown. The aim of this study was thus to investigate the inputs of anthropogenic DOM from land-based aquaculture to the predominantly pristine river systems of North Patagonia. We hypothesized, that i) DOM exported from land-based aquaculture mainly consists of protein-like fluorescence (tyrosine and tryptophan) released from fish feces and food remains, and that ii) this DOM is highly degradable and therefore rapidly turned-over within the receiving streams. In the North Patagonian region we conducted a screening of ten land-based aquacultures and an intensive sampling campaign for one aquaculture. This was combined with longitudinal transects and a degradation experiment in order to couple the composition of DOM exported from land-based aquacultures to its degradability in streams. We measured dissolved organic carbon (DOC) concentration by high-temperature catalytic oxidation and DOM composition by fluorescence spectroscopy and parallel factor analysis. In the effluent of the ten screened aquacultures and in the repeated sampling of one aquaculture, we consistently found an increase of DOC concentrations and a dominance of protein-like fluorescence. The protein-like fluorescence rapidly disappeared downstream of the aquacultures, and in the degradation experiment. 21% of the DOC export from the repeatedly sampled aquaculture resulted from food addition and 76% from fish production. We conclude that large amounts of degradable DOM are exported from land-based aquacultures. This probably has strong effects on the ecological structure and function of North Patagonian streams, and similarly affected streams worldwide.


Subject(s)
Aquaculture , Environmental Monitoring/methods , Rivers/chemistry , Water Pollutants, Chemical/analysis , Carbon/analysis , Chile
SELECTION OF CITATIONS
SEARCH DETAIL
...