Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Inorg Chem ; 40(24): 6272-80, 2001 Nov 19.
Article in English | MEDLINE | ID: mdl-11703130

ABSTRACT

The oxidation of dihydrogen by metal tetraoxo compounds was investigated. Kinetic measurements of the oxidations of H(2) by MnO(4)(-) and RuO(4), performed by UV-vis spectroscopy, showed these reactions to be quite rapid at 25 degrees C (k(1) approximately (3-6) x 10(-2) M(-1) s(-1)). Rates measured for H(2) oxidation by MnO(4)(-) in aqueous solution (using KMnO(4)) and in chlorobenzene (using (n)Bu(4)NMnO(4)) revealed only a minor solvent effect on the reaction rate. Substantial kinetic isotope effects [(k(H)2/k(D)2 = 3.8(2) (MnO(4)(-), aq), 4.5(5) (MnO(4)(-), C(6)H(5)Cl soln), and 1.8(6) (RuO(4), CCl(4) soln)] indicated that H-H bond cleavage is rate determining and that the mechanism of dihydrogen cleavage is likely similar in aqueous and organic solutions. Third-row transition-metal oxo compounds, such as OsO(4), ReO(4)(-), and MeReO(3), were found to be completely unreactive toward H(2). Experiments were performed to probe for a catalytic hydrogen/deuterium exchange between D(2) and H(2)O as possible evidence of dihydrogen sigma-complex intermediates, but no H/D exchange was observed in the presence of various metal oxo compounds at various pH values. In addition, no inhibition of RuO(4)-catalyzed hydrocarbon oxidation by H(2) was observed. On the basis of the available evidence, a concerted mechanism for the cleavage of H(2) by metal tetraoxo compounds is proposed. Theoretical models were developed for pertinent MnO(4)(-) + H(2) transition states using density functional theory in order to differentiate between concerted [2 + 2] and [3 + 2] scissions of H(2). The density functional theory calculations strongly favor the [3 + 2] mechanism and show that the H(2) cleavage shares some mechanistic features with related hydrocarbon oxidation reactions. The calculated activation energy for the [3 + 2] pathway (DeltaH(++) = 15.4 kcal mol(-1)) is within 2 kcal mol(-1) of the experimental value.

2.
Inorg Chem ; 40(20): 5106-16, 2001 Sep 24.
Article in English | MEDLINE | ID: mdl-11559067

ABSTRACT

Reaction of LnI2 (Ln = Sm, Yb) with two equivalents of NaTp(Me2) or reduction of Eu(Tp(Me2))2OTf gives good yields of the highly insoluble homoleptic Ln(II) complexes, Ln(Tp(Me2))2 (Ln = Sm (1a), Yb (2a), Eu (3a)). Use of the additionally 4-ethyl substituted Tp(Me2,4Et) ligand produces the analogous, but soluble Ln(Tp(Me2,4Et))2 (1-3b) complexes. Soluble compounds are also obtained with the Tp(Ph) and Tp(Tn) ligands (Tn = thienyl), Ln(Tp(Ph))2 (Ln = Sm, 1c; Yb, 2c) and Ln(Tp(Tn))2 (Ln = Sm, 1d; Yb, 2d). To provide benchmark parameters for structural comparison the series of Sm(Tp(Me2))2X complexes (X = F, 1e; Cl, 1f; Br, 1g; I, 1h; BPh4, 1j) were prepared either via oxidation of the Sm(Tp(Me2))2 or salt metathesis from SmX3 (X = Cl, Br, I). The solid-state structures of 1-3a, 1b, 1-2c and 1e, 1f, 1h, and 1j were determined by single-crystal X-ray diffraction. The homoleptic bis-Tp complexes are all six-coordinate with trigonal antiprismatic geometries, planes of the kappa(3)-Tp ligands are parallel to one another. In the series of Sm(Tp(Me2))2X complexes the structure changes from seven-coordinate molecular compounds, with intact Sm-X bonds, for X = F, Cl, to six-coordinate ionic structures [Sm(Tp(Me2))2]X (X = I, BPh4), suitable crystals of the bromide compound could not be obtained. The dependence of the structures on the size of X is understandable in terms of the interplay between the size of the cleft that the [Sm(Tp(Me2))2](+) fragment can make available and the donor ability of the anionic group toward the hard Sm(III) center.

3.
Inorg Chem ; 40(4): 593-600, 2001 Feb 12.
Article in English | MEDLINE | ID: mdl-11225098

ABSTRACT

A series of (eta 6-arene)OsII complexes containing the saturated nitrogen donor ligands tmtacn, tacn, and NH3 are prepared and characterized. The electrochemical properties and photochemical reactions of these complexes are studied, and the solid-state structures for [(eta 6-p-cymene)Os(tacn)](PF6)2 (1) and [(eta 6-p-cymene)Os(tmtacn)](PF6)2 (2) are determined. Single-crystal X-ray data: 1, orthorhombic, space group Pbca-D2h15 (No. 61), with a = 14.716(3) A, b = 17.844(3) A, c = 18.350(4) A, V = 4819(2) A3, and Z = 8; 2, monoclinic, space group C2-C2(3) (No. 5), with a = 17.322(4) A, b = 10.481(3) A, c = 15.049(4) A, beta = 98.72 degrees, V = 2701(1) A3, and Z = 4.


Subject(s)
Heterocyclic Compounds/chemistry , Organometallic Compounds/chemistry , Organometallic Compounds/chemical synthesis , Osmium Compounds/chemistry , Osmium Compounds/chemical synthesis , Quaternary Ammonium Compounds/chemistry , Electrochemistry , Ligands , Magnetic Resonance Spectroscopy , Models, Chemical , Oxidation-Reduction , Photochemistry , Photolysis
SELECTION OF CITATIONS
SEARCH DETAIL
...