Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 13(13)2023 Jun 29.
Article in English | MEDLINE | ID: mdl-37446493

ABSTRACT

In this work, the extraction of vanadium (V) ions from an alkaline solution using a commercial quaternary ammonium salt and the production of metal vanadates through precipitation stripping were carried out. The crystallization of copper vanadates from the extracts was performed using a solution containing a copper(II) source in concentrated chloride media as a stripping agent. In an attempt to control growth, a stabilizing polymer (polyvinylpyrrolidone, PVP) was added to the stripping solution. The structural characteristics of the crystallized products, mainly copper pyrovanadate (volborthite, Cu3V2O7(OH)2·(H2O)2) nanoflakes and nanoflowers and the experimental parameter influencing the efficiency of the stripping process were studied. From the results, the synthesis of nanostructured vanadates is a simple and versatile method for the fabrication of valuable three-dimensional structures providing abundant active zones for energy and catalytic applications.

2.
ACS Omega ; 8(6): 5702-5714, 2023 Feb 14.
Article in English | MEDLINE | ID: mdl-36816681

ABSTRACT

In this study, synthetic pure cassiterite and cassiterite doped with two different Fe contents were successfully recrystallized by means of sintering. Their crystal structure and chemical compositions were characterized by X-ray powder diffraction (XRD) as well as scanning electron microscopy (SEM) combined with energy-dispersive X-ray (EDX) analysis. Their floatability was studied by microflotation with a diphosphonic acid surfactant named Lauraphos301 as a collector. Unlike the addition of ferric ions in solution, which strongly depressed the floatability of all of the cassiterite samples, a much higher flotation efficiency of the Fe-doped cassiterite samples was found especially at lower collector concentrations. The cassiterite floatability is proportional to the Fe content in cassiterite at a broad range of pH, and the recovery has the following order: cassiterite with 1417 ppm Fe > cassiterite with 1165 ppm Fe > pure cassiterite. The electrokinetic behavior of the cassiterite samples with and without the collector was studied by electrophoretic measurements and revealed that the chemical interaction dominated the adsorption. With the help of the particle shape analysis, a more angular shape was found for the Fe-doped cassiterite samples. Moreover, without the influence of particle shape, much abundant adsorption of Lauraphos301 was found on the Fe-doped cassiterite samples by AFM topography imaging. The minor amount of Fe in the cassiterite lattice and a more angular shape of the Fe-doped cassiterite samples were believed to enhance floatability collectively. The study reveals that the influence of the chemical composition of the minerals on flotation was almost inextricably bound up with particle morphology and emphasizes the importance of considering both factors and investigating them individually for the flotation study.

3.
Nanomaterials (Basel) ; 14(1)2023 Dec 22.
Article in English | MEDLINE | ID: mdl-38202493

ABSTRACT

Cobalt, nickel, manganese and zinc vanadates were synthesized by a hydrometallurgical two-phase method. The extraction of vanadium (V) ions from alkaline solution using Aliquat® 336 was followed by the production of metal vanadates through precipitation stripping. Precipitation stripping was carried out using solutions of the corresponding metal ions (Ni (II), Co (II), Mn (II) and Zn (II), 0.05 mol/L in 4 mol/L NaCl), and the addition time of the strip solution was varied (0, 1 and 2 h). The time-dependent experiments showed a notable influence on the composition, structure, morphology and crystallinity of the two-dimensional vanadate products. Inspired by these findings, we selected two metallic vanadate products and studied their properties as alternative cathode materials for nonaqueous sodium and lithium metal batteries.

SELECTION OF CITATIONS
SEARCH DETAIL
...