Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
1.
ACS Catal ; 13(17): 11548-11555, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37671177

ABSTRACT

The implementation of HCN-free transfer hydrocyanation reactions on laboratory scales has recently been achieved by using HCN donor reagents under nickel- and Lewis acid co-catalysis. More recently, malononitrile-based HCN donor reagents were shown to undergo the C(sp3)-CN bond activation by the nickel catalyst in the absence of Lewis acids. However, there is a lack of detailed mechanistic understanding of the challenging C(sp3)-CN bond cleavage step. In this work, in-depth kinetic and computational studies using alkynes as substrates were used to elucidate the overall reaction mechanism of this transfer hydrocyanation, with a particular focus on the activation of the C(sp3)-CN bond to generate the active H-Ni-CN transfer hydrocyanation catalyst. Comparisons of experimentally and computationally derived 13C kinetic isotope effect data support a direct oxidative addition mechanism of the nickel catalyst into the C(sp3)-CN bond facilitated by the coordination of the second nitrile group to the nickel catalyst.

2.
J Am Chem Soc ; 144(40): 18642-18649, 2022 10 12.
Article in English | MEDLINE | ID: mdl-36179150

ABSTRACT

Collagen model peptides (CMPs), composed of proline-(2S,4R)-hydroxyproline-glycine (POG) repeat units, have been extensively used to study the structure and stability of triple-helical collagen─the dominant structural protein in mammals─at the molecular level. Despite the more than 50-year history of CMPs and numerous studies on the relationship between the composition of single-stranded CMPs and the thermal stability of the assembled triple helices, little attention has been paid to the effects arising from their terminal residues. Here, we show that frame-shifted CMPs, which share POG repeat units but terminate with P, O, or G, form triple helices with vastly different thermal stabilities. A melting temperature difference as high as 16 °C was found for triple helices from 20-mers Ac-OG[POG]6-NH2 and Ac-[POG]6PO-NH2, and triple helices of the constitutional isomers Ac-[POG]7-NH2 and Ac-[GPO]7-NH2 melt 10 °C apart. A combination of thermal denaturation, circular dichroism and NMR spectroscopic studies, and molecular dynamics simulations revealed that the stability differences originate from the propensity of the peptide termini to preorganize into a polyproline-II helical structure. Our results advise that care must be taken when designing peptide mimics of structural proteins, as subtle changes in the terminal residues can significantly affect their properties. Our findings also provide a general and straightforward tool for tuning the stability of CMPs for applications as synthetic materials and biological probes.


Subject(s)
Collagen , Peptides , Amino Acid Sequence , Circular Dichroism , Collagen/chemistry , Glycine , Hydroxyproline/chemistry , Peptides/chemistry , Proline/chemistry
3.
Phys Chem Chem Phys ; 24(38): 23551-23560, 2022 Oct 05.
Article in English | MEDLINE | ID: mdl-36129319

ABSTRACT

1H and 13C chemical shifts of 35 small, rigid molecules were measured under standardized conditions in chloroform-d and in tetrachloromethane. The solvent change mainly affects carbon shifts of polar functional groups. This difference due to specific interactions with CDCl3 cannot be adequately reproduced by DFT calculations in implicit solvent. The new dataset provides an accurate basis for the validation and calibration of shift calculations, especially with respect to improved solvent models.


Subject(s)
Carbon Tetrachloride , Chloroform , Carbon , Chloroform/chemistry , Magnetic Resonance Spectroscopy/methods , Solvents/chemistry
4.
J Am Chem Soc ; 144(29): 13096-13108, 2022 07 27.
Article in English | MEDLINE | ID: mdl-35834613

ABSTRACT

Functional group metathesis is an emerging field in organic chemistry with promising synthetic applications. However, no complete mechanistic studies of these reactions have been reported to date, particularly regarding the nature of the key functional group transfer mechanism. Unraveling the mechanism of these transformations would not only allow for their further improvement but would also lead to the design of novel reactions. Herein, we describe our detailed mechanistic studies of the nickel-catalyzed functional group metathesis reaction between aryl methyl sulfides and aryl nitriles, combining experimental and computational results. These studies did not support a mechanism proceeding through reversible migratory insertion of the nitrile into a Ni-Ar bond and provided strong support for an alternative mechanism involving a key transmetalation step between two independently generated oxidative addition complexes. Extensive kinetic analysis, including rate law determination and Eyring analysis, indicated the oxidative addition complex of aryl nitrile as the resting state of the catalytic reaction. Depending on the concentration of aryl methyl sulfide, either the reductive elimination of aryl nitrile or the oxidative addition into the C(sp2)-S bond of aryl methyl sulfide is the turnover-limiting step of the reaction. NMR studies, including an unusual 31P-2H HMBC experiment using deuterium-labeled complexes, unambiguously demonstrated that the sulfide and cyanide groups exchange during the transmetalation step, rather than the two aryl moieties. In addition, Eyring and Hammett analyses of the transmetalation between two Ni(II) complexes revealed that this central step proceeds via an associative mechanism. Organometallic studies involving the synthesis, isolation, and characterization of all putative intermediates and possible deactivation complexes have further shed light on the reaction mechanism, including the identification of a key deactivation pathway, which has led to an improved catalytic protocol.


Subject(s)
Nickel , Nitriles , Catalysis , Kinetics , Nickel/chemistry , Sulfides
5.
Sci Rep ; 11(1): 21761, 2021 11 05.
Article in English | MEDLINE | ID: mdl-34741032

ABSTRACT

Enteric fermentation from ruminants is a primary source of anthropogenic methane emission. This study aims to add another approach for methane mitigation by manipulation of the rumen microbiome. Effects of choline supplementation on methane formation were quantified in vitro using the Rumen Simulation Technique. Supplementing 200 mM of choline chloride or choline bicarbonate reduced methane emissions by 97-100% after 15 days. Associated with the reduction of methane formation, metabolomics analysis revealed high post-treatment concentrations of ethanol, which likely served as a major hydrogen sink. Metagenome sequencing showed that the methanogen community was almost entirely lost, and choline-utilizing bacteria that can produce either lactate, ethanol or formate as hydrogen sinks were enriched. The taxa most strongly associated with methane mitigation were Megasphaera elsdenii and Denitrobacterium detoxificans, both capable of consuming lactate, which is an intermediate product and hydrogen sink. Accordingly, choline metabolism promoted the capability of bacteria to utilize alternative hydrogen sinks leading to a decline of hydrogen as a substrate for methane formation. However, fermentation of fibre and total organic matter could not be fully maintained with choline supplementation, while amino acid deamination and ethanolamine catabolism produced excessive ammonia, which would reduce feed efficiency and adversely affect live animal performance.


Subject(s)
Choline/administration & dosage , Gastrointestinal Microbiome , Lipotropic Agents/administration & dosage , Methane/biosynthesis , Rumen/microbiology , Animals , Cattle , Dietary Supplements
6.
Org Biomol Chem ; 18(36): 7110-7126, 2020 09 23.
Article in English | MEDLINE | ID: mdl-32902550

ABSTRACT

Cyclic octadepsipeptides such as PF1022A and its synthetic derivative emodepside exhibit anthelmintic activity with the latter sold as a commercial drug treatment against gastrointestinal nematodes for animal health use. The structure-permeability relationship of these cyclic depsipeptides that could ultimately provide insights into the compound bioavailability is not yet well understood. The fully N-methylated amide backbone and apolar sidechain residues do not allow for the formation of intramolecular hydrogen bonds, normally observed in the membrane-permeable conformations of cyclic peptides. Hence, any understanding gained on these depsipeptides would serve as a prototype for future design strategies. In previous nuclear magnetic resonance (NMR) studies, two macrocyclic core conformers of emodepside were detected, one with all backbone amides in trans-configuration (hereon referred as the symmetric conformer) and the other with one amide in cis-configuration (hereon referred as the asymmetric conformer). In addition, these depsipeptides were also reported to be ionophores with a preference of potassium over sodium. In this study, we relate the conformational behavior of PF1022A, emodepside, and closely related analogs with their ionophoric characteristic probed using NMR and molecular dynamics (MD) simulations and finally evaluated their passive membrane permeability using PAMPA. We find that the equilibrium between the two core conformers shifts more towards the symmetric conformer upon addition of monovalent cations with selectivity for potassium over sodium. Both the NMR experiments and the theoretical Markov state models based on extensive MD simulations indicate a more rigid backbone for the asymmetric conformation, whereas the symmetric conformation shows greater flexibility. The experimental results further advocate for the symmetric conformation binding the cation. The PAMPA results suggest that the investigated depsipeptides are retained in the membrane, which may be advantageous for the likely target, a membrane-bound potassium channel.


Subject(s)
Ionophores
7.
J Biomol NMR ; 74(10-11): 579-594, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32556806

ABSTRACT

Fluorine NMR has recently gained high popularity in drug discovery as it allows efficient and sensitive screening of large numbers of ligands. However, the positive hits found in screening must subsequently be ranked according to their affinity in order to prioritize them for follow-up chemistry. Unfortunately, the primary read-out from the screening experiments, namely the increased relaxation rate upon binding, is not proportional to the affinity of the ligand, as it is polluted by effects such as exchange broadening. Here we present the method CSAR (Chemical Shift-anisotropy-based Affinity Ranking) for reliable ranking of fluorinated ligands by NMR, without the need of isotope labeled protein, titrations or setting up a reporter format. Our strategy is to produce relaxation data that is directly proportional to the binding affinity. This is achieved by removing all other contributions to relaxation as follows: (i) exchange effects are efficiently suppressed by using high power spin lock pulses, (ii) dipolar relaxation effects are approximately subtracted by measuring at two different magnetic fields and (iii) differences in chemical shift anisotropy are normalized using calculated values. A similar ranking can be obtained with the simplified approach FastCSAR that relies on a measurement of a single relaxation experiment at high field (preferably > 600 MHz). An affinity ranking obtained in this simple way will enable prioritizing ligands and thus improve the efficiency of fragment-based drug design.


Subject(s)
Drug Discovery/methods , Fluorine/chemistry , Magnetic Resonance Spectroscopy/methods , Proteins/chemistry , Anisotropy , Density Functional Theory , Drug Design , Ligands , Magnetic Fields
8.
Chem Commun (Camb) ; 55(16): 2253-2256, 2019 Feb 19.
Article in English | MEDLINE | ID: mdl-30697616

ABSTRACT

A combined experimental and computational approach provided insight into the nature and conformational dependence of long-range 4JHF couplings in α-fluoro amides. The dependence of 4JHF on substituents and the solvent was investigated. H-F coupling constants determined by NMR spectroscopy are in agreement with DFT calculations. NBO analysis revealed that a favourable nF→σNH* interaction correlates with the magnitude of 4JHF.

9.
Org Lett ; 21(1): 201-205, 2019 01 04.
Article in English | MEDLINE | ID: mdl-30565950

ABSTRACT

A series of quinoxaline cavitands bearing pendant amide groups with various substituent sizes (Et, iPr, tBu) were synthesized, and their cavity size/structure were investigated by X-ray and NMR analyses. In the case of the Et or iPr amide cavitand, the conformation of the molecule was in the vase form, while the bulky tBu amide cavitand gave the kite conformation at room temperature. X-ray crystal structures of Et and iPr cavitands clearly showed the intramolecular H-bondings to influence the conformation and the cavity sizes dependent on the bulkiness of functional groups. The 1H NMR spectrum revealed that the Et cavitand can encapsulate an adamantane guest compound with slow exchange.

10.
J Am Chem Soc ; 140(34): 10829-10838, 2018 08 29.
Article in English | MEDLINE | ID: mdl-30106584

ABSTRACT

Peptides have become valuable as catalysts for a variety of different reactions, but little is known about the conformational properties of peptidic catalysts. We investigated the conformation of the peptide H-dPro-Pro-Glu-NH2, a highly reactive and stereoselective catalyst for conjugate addition reactions, and the corresponding enamine intermediate in solution by NMR spectroscopy and computational methods. The combination of nuclear Overhauser effects (NOEs), residual dipolar couplings (RDCs), J-couplings, and temperature coefficients revealed that the tripeptide adopts a single predominant conformation in its ground state. The structure is a type I ß-turn, which gains stabilization from three hydrogen bonds that are cooperatively formed between all functional groups (secondary amine, carboxylic acid, amides) within the tripeptide. In contrast, the conformation of the enamine intermediate is significantly more flexible. The conformational ensemble of the enamine is still dominated by the ß-turn, but the backbone and the side chain of the glutamic acid residue are more dynamic. The key to the switch between rigidity and flexibility of the peptidic catalyst is the CO2H group in the side chain of the glutamic acid residue, which acts as a lid that can open and close. As a result, the peptidic catalyst is able to adapt to the structural requirements of the intermediates and transition states of the catalytic cycle. These insights might explain the robustness and high reactivity of the peptidic catalyst, which exceeds that of other secondary amine-based organocatalysts. The data suggest that a balance between rigidity and flexibility, which is reminiscent of the dynamic nature of enzymes, is beneficial for peptidic catalysts and other synthetic catalysts.

11.
Helv Chim Acta ; 101(10)2018 Oct.
Article in English | MEDLINE | ID: mdl-30905972

ABSTRACT

Oligo-arginines are thoroughly studied cell-penetrating peptides (CPPs, Figures 1 and 2). Previous in-vitro investigations with the octaarginine salt of the phosphonate fosmidomycin (herbicide and anti-malaria drug) have shown a 40-fold parasitaemia inhibition with P. falciparum, compared to fosmidomycin alone (Figure 3). We have now tested this salt, as well as the corresponding phosphinate salt of the herbicide glufosinate, for herbicidal activity with whole plants by spray application, hoping for increased activities, i.e. decreased doses. However, both salts showed low herbicidal activity, indicating poor foliar uptake (Table 1). Another pronounced difference between in-vitro and in-vivo activity was demonstrated with various cell-penetrating octaarginine salts of fosmidomycin: intravenous injection to mice caused exitus of the animals within minutes, even at doses as low as 1.4 µmol/kg (Table 2). The results show that use of CPPs for drug delivery, for instance to cancer cells and tissues, must be considered with due care. The biopolymer cyanophycin is a poly-aspartic acid containing argininylated side chains (Figure 4); its building block is the dipeptide H-ßAsp-αArg-OH (H-Adp-OH). To test and compare the biological properties with those of octaarginines we synthesized Adp8-derivatives (Figure 5). Intravenouse injection of H-Adp8-NH2 into the tail vein of mice with doses as high as 45 µmol/kg causes no symptoms whatsoever (Table 3), but H-Adp8-NH2 is not cell penetrating (HEK293 and MCF-7 cells, Figure 6). On the other hand, the fluorescently labeled octamers FAM-(Adp(OMe))8-NH2 and FAM-(Adp(NMe2))8-NH2 with ester and amide groups in the side chains exhibit mediocre to high cell-wall permeability (Figure 6), and are toxic (Table 3). Possible reasons for this behavior are discussed (Figure 7) and corresponding NMR spectra are presented (Figure 8).

12.
J Biol Chem ; 292(43): 17832-17844, 2017 10 27.
Article in English | MEDLINE | ID: mdl-28912268

ABSTRACT

Wall teichoic acids (WTAs) are the most abundant glycopolymers found on the cell wall of many Gram-positive bacteria, whose diverse surface structures play key roles in multiple biological processes. Despite recent technological advances in glycan analysis, structural elucidation of WTAs remains challenging due to their complex nature. Here, we employed a combination of ultra-performance liquid chromatography-coupled electrospray ionization tandem-MS/MS and NMR to determine the structural complexity of WTAs from Listeria species. We unveiled more than 10 different types of WTA polymers that vary in their linkage and repeating units. Disparity in GlcNAc to ribitol connectivity, as well as variable O-acetylation and glycosylation of GlcNAc contribute to the structural diversity of WTAs. Notably, SPR analysis indicated that constitution of WTA determines the recognition by bacteriophage endolysins. Collectively, these findings provide detailed insight into Listeria cell wall-associated carbohydrates, and will guide further studies on the structure-function relationship of WTAs.


Subject(s)
Cell Wall/chemistry , Cell Wall/metabolism , Listeria/metabolism , Teichoic Acids/chemistry , Teichoic Acids/metabolism , Acetylglucosamine/chemistry , Acetylglucosamine/metabolism , Ribitol/chemistry , Ribitol/metabolism , Species Specificity
13.
J Nutr ; 147(7): 1258-1266, 2017 07.
Article in English | MEDLINE | ID: mdl-28566523

ABSTRACT

Background: Breath tests (BTs) present an alternative gastric-emptying (GE) measure. However, their efficacy in the measurement of the GE rate of lipid emulsions (LEs) is unknown.Objective: The objective of this work was to investigate the validity of 13C BTs as a measure of fat GE rate in LEs.Methods: The lipophilic 13C octanoate (OCC) BT marker was investigated for fat GE with the hydrophilic 13C sodium acetate (ACC) and the triglyceride 13C trioctanoin (TCC) markers as comparators. Data from 2 randomized studies were combined [50 healthy participants; 25 men, mean ± SD age: 23 ± 2.8 y; mean ± SD body mass index (in kg/m2): 22.4 ± 1.7]. Each participant was given either an acid-stable LE (LE1) or an acid-unstable LE (LE4) at each visit. Twenty-three participants underwent simultaneous MRI. The effect of LEs on 13CO2 excretion profiles was determined. The BT half-emptying times (BT T50) were validated with the MRI half-emptying time of the ingested fat volume (MRI T50).Results: The effect of LEs on 13CO2 excretion depended on the properties of the 13C marker. T50 for OCC was shorter by 98 min for LE1 than for LE4 (P < 0.001). Other markers showed either no LE dependency or a longer T50 for LE1 than for LE4. No difference in T50 between OCC and ACC was detected in LE1. In LE4, the T50 was longer by 154 min (P < 0.0001). There was some concordance between MRI T50 and OCC BT T50 for LE1 (rc = 0.7). No other marker showed any concordance with fat GE. 13C-Nuclear magnetic resonance in vitro findings were compatible with changes in the kinetics of phase transfer of OCC dependent on its protonation state.Conclusions: The structure of fat present in the stomach affects 13CO2 excretion. The chemical properties of the 13C marker and their gastric and postgastric interaction with fat renders 13CO2 excretion an inappropriate measure of LE emptying in healthy adults. This trial was registered at clinicaltrials.gov as NCT02226029 and NCT02602158.


Subject(s)
Breath Tests/methods , Carbon/metabolism , Gastric Emptying/physiology , Lipid Metabolism/physiology , Lipids/administration & dosage , Adult , Carbon Isotopes , Cross-Over Studies , Emulsions/chemistry , Humans , Postprandial Period
14.
Chemistry ; 23(24): 5729-5735, 2017 Apr 27.
Article in English | MEDLINE | ID: mdl-28106929

ABSTRACT

Griselimycin (GM) and methylgriselimycin (MGM), naturally produced by microorganisms of the genus Streptomyces, are cyclic depsipeptides composed of ten amino acids. They exhibit antibacterial activity against Mycobacterium species by inhibiting the sliding clamp of prokaryotic DNA polymerase III and are therefore considered as potential anti-tuberculosis drugs. The difference between the peptides is the presence of l-(R)-4-methyl-proline in MGM instead of l-proline in GM at position 8 of the amino acid sequence. Methylation increases both metabolic stability and activity of MGM compared to GM. To get deeper insight into the structure-activity relationship, the solution structure of the cyclic part of MGM was determined using rotating-frame nuclear Overhauser effect (ROE) distance restraints and residual dipolar couplings (RDC). The structure of MGM in solution is compared to the structure of GM in a co-crystal with DNA polymerase III subunit beta. As a result, a highly defined structural model of MGM is obtained, which shows related characteristics to the bound GM.


Subject(s)
Anti-Bacterial Agents/pharmacology , Depsipeptides/chemistry , Mycobacterium tuberculosis/drug effects , Anti-Bacterial Agents/chemistry , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Crystallography, X-Ray , DNA Polymerase III/chemistry , DNA Polymerase III/metabolism , Depsipeptides/pharmacology , Magnetic Resonance Spectroscopy , Molecular Conformation , Peptides, Cyclic/chemistry , Peptides, Cyclic/pharmacology
15.
Magn Reson Chem ; 55(7): 655-661, 2017 Jul.
Article in English | MEDLINE | ID: mdl-27976817

ABSTRACT

Residual dipolar couplings (RDCs) are a rich source of structural information that goes beyond the range covered by the nuclear Overhauser effect or scalar coupling constants. They can only be measured in partially oriented samples. RDC studies of peptides in organic solvents have so far been focused on samples in chloroform or DMSO. Here, we show that stretched poly(vinyl acetate) can be used for the partial alignment of a linear ß-peptide with proteinogenic side chains in methanol. 1 DCH , 1 DNH , and 2 DHH RDCs were collected with this sample and included as restraints in a simulated annealing calculation. Incorporation of RDCs in the structure calculation process improves the long-range definition in the backbone of the resulting 314 -helix and uncovers side-chain mobility. Experimental side-chain RDCs of the central leucine and valine residues are in good agreement with predicted values from a local three-state model. Copyright © 2016 John Wiley & Sons, Ltd.


Subject(s)
Methanol/chemistry , Oligopeptides/chemistry , Computer Simulation , Models, Molecular , Nuclear Magnetic Resonance, Biomolecular , Physical Phenomena , Protein Conformation , Solvents/chemistry
16.
Sci Rep ; 6: 36246, 2016 11 07.
Article in English | MEDLINE | ID: mdl-27819285

ABSTRACT

Glycerol/diol dehydratases catalyze the conversion of glycerol to 3-hydroxypropionaldehyde (3-HPA), the basis of a multi-component system called reuterin. Reuterin has antimicrobial properties and undergoes chemical conjugation with dietary heterocyclic amines (HCAs). In aqueous solution reuterin is in dynamic equilibrium with the toxicant acrolein. It was the aim of this study to investigate the extent of acrolein formation at various physiological conditions and to determine its role in biological and chemical activities. The application of a combined novel analytical approach including IC-PAD, LC-MS and NMR together with specific acrolein scavengers suggested for the first time that acrolein, and not 3-HPA, is the active compound responsible for HCA conjugation and antimicrobial activity attributed to reuterin. As formation of the HCA conjugate was observed in vivo, our results imply that acrolein is formed in the human gut with implications on detoxification of HCAs. We propose to re-define the term reuterin to include acrolein.


Subject(s)
Acrolein , Anti-Bacterial Agents , Gastrointestinal Microbiome , Glyceraldehyde/analogs & derivatives , Propane , Acrolein/chemistry , Acrolein/metabolism , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/metabolism , Glyceraldehyde/chemistry , Glyceraldehyde/metabolism , Humans , Propane/chemistry , Propane/metabolism
17.
Angew Chem Int Ed Engl ; 55(42): 13127-13131, 2016 10 10.
Article in English | MEDLINE | ID: mdl-27632946

ABSTRACT

α-Fluorinated ß-amino thioesters were obtained in high yields and stereoselectivities by organocatalyzed addition reactions of α-fluorinated monothiomalonates (F-MTMs) to N-Cbz- and N-Boc-protected imines. The transformation requires catalyst loadings of only 1 mol % and proceeds under mild reaction conditions. The obtained addition products were readily used for coupling-reagent-free peptide synthesis in solution and on solid phase. The α-fluoro-ß-(carb)amido moiety showed distinct conformational preferences, as determined by crystal structure and NMR spectroscopic analysis.


Subject(s)
Amides/chemistry , Esters/chemical synthesis , Peptides/chemical synthesis , Quinidine/chemistry , Sulfhydryl Compounds/chemical synthesis , Catalysis , Crystallography, X-Ray , Esters/chemistry , Halogenation , Models, Molecular , Molecular Conformation , Peptides/chemistry , Quinidine/analogs & derivatives , Stereoisomerism , Sulfhydryl Compounds/chemistry
18.
J Am Chem Soc ; 137(39): 12502-5, 2015 Oct 07.
Article in English | MEDLINE | ID: mdl-26380872

ABSTRACT

Homochiral strands of alternating alleno-acetylenes and phenanthroline ligands (P)-1 and (P2)-2, as well as their corresponding enantiomers, selectively assemble with the addition of silver(I) salt to yield dinuclear and trinuclear double helicates, respectively. Upon increasing the solvent polarity, the dinuclear and trinuclear helicates interlock to form a [2]catenane and bis[2]catenane, bearing 14 chirality elements, respectively. The solid-state structure of the [2]catenane reveals a nearly perfect fit of the interlocked strands, and the ECD spectra show a significant amplification of the chiroptical properties upon catenation, indicating stabilization of the helical secondary structure. Highly selective narcissistic self-sorting was demonstrated for a racemic mixture consisting of both short and long alleno-acetylenic strands, highlighting their potential for the preparation of linear catenanes of higher order.

19.
Nat Chem Biol ; 11(6): 398-400, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25867044

ABSTRACT

An improved understanding of enzymes' catalytic proficiency and stereoselectivity would further enable applications in chemistry, biocatalysis and industrial biotechnology. We use a chemical probe to dissect individual catalytic steps of enoyl-thioester reductases (Etrs), validating an active site tyrosine as the cryptic proton donor and explaining how it had eluded definitive identification. This information enabled the rational redesign of Etr, yielding mutants that create products with inverted stereochemistry at wild type-like turnover frequency.


Subject(s)
Biotechnology/methods , Oxidoreductases Acting on CH-CH Group Donors/chemistry , Oxidoreductases Acting on CH-CH Group Donors/genetics , Protein Engineering/methods , Binding Sites , Catalysis , Models, Molecular , Protein Conformation , Protons , Stereoisomerism , Substrate Specificity , Tyrosine/chemistry , Tyrosine/genetics
20.
J Am Chem Soc ; 137(7): 2524-35, 2015 Feb 25.
Article in English | MEDLINE | ID: mdl-25633201

ABSTRACT

Conversion of soluble folded proteins into insoluble amyloids generally proceeds in three distinct mechanistic stages: (1) initial protein misfolding into aggregation-competent conformers, (2) subsequent formation of oligomeric species and, finally, (3) self-assembly into extended amyloid fibrils. In the work reported herein, we interrogated the amyloidogenesis mechanism of human ß2-microglobulin (ß2m), which is thought to be triggered by a pivotal cis-trans isomerization of a proline residue at position 32 in the polypeptide, with nonstandard amino acids. Using chemical protein synthesis we prepared a ß2m analogue in which Pro32 was replaced by the conformationally constrained amino acid α-methylproline (MePro). The strong propensity of MePro to adopt a trans prolyl bond led to enhanced population of a non-native [trans-MePro32]ß2m protein conformer, which readily formed oligomers at neutral pH. In the presence of the antibiotic rifamycin SV, which inhibits amyloid growth of wild-type ß2m, [MePro32]ß2m was nearly quantitatively converted into different spherical oligomeric species. Self-assembly into amyloid fibrils was not observed in the absence of seeding, however, even at low pH (<3), where wild-type ß2m spontaneously forms amyloids. Nevertheless, we found that aggregation-preorganized [MePro32]ß2m can act in a prion-like fashion, templating misfolded conformations in a natively folded protein. Overall, these results provide detailed insight into the role of cis-trans isomerization of Pro32 and ensuing structural rearrangements that lead to initial ß2m misfolding and aggregation. They corroborate the view that conformational protein dynamics enabled by reversible Pro32 cis-trans interconversion rather than simple population of the trans conformer is critical for both nucleation and subsequent growth of ß2m amyloid structures.


Subject(s)
Amino Acid Substitution , Amyloid/chemistry , Proline/analogs & derivatives , Protein Multimerization , beta 2-Microglobulin/chemistry , Humans , Hydrogen-Ion Concentration , Molecular Dynamics Simulation , Proline/chemistry , Protein Multimerization/drug effects , Protein Stability , Protein Structure, Secondary , Rifamycins/pharmacology , Stereoisomerism , beta 2-Microglobulin/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...