Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
J Chem Phys ; 158(18)2023 May 14.
Article in English | MEDLINE | ID: mdl-37154274

ABSTRACT

Non-impact effects in the absorption spectra of HCl in various collision-partners are investigated both experimentally and theoretically. Fourier transform spectra of HCl broadened by CO2, air, and He have been recorded in the 2-0 band region at room temperature and for a wide pressure range, from 1 to up to 11.5 bars. Comparisons between measurements and calculations using Voigt profiles show strong super-Lorentzian absorptions in the troughs between successive lines in the P and R branches for HCl in CO2. A weaker effect is observed for HCl in air, while for HCl in He, Lorentzian wings are in very good agreement with measurements. In addition, the line intensities retrieved by fitting the Voigt profile on the measured spectra decrease with the density of the perturber. This perturber-density dependence decreases with the rotational quantum number. For HCl in CO2, the decrease in the retrieved line intensity can reach 2.5% per amagat for the first rotational quantum numbers. This number is about 0.8% per amagat for HCl in air, while for HCl in He, no density dependence of the retrieved line intensity is observed. Requantized classical molecular dynamics simulations have been performed for HCl-CO2 and HCl-He in order to simulate the absorption spectra for various perturber-density conditions. The density dependence of the intensities retrieved from the simulated spectra and the predicted super-Lorentzian behavior in the troughs between lines are in good agreement with experimental determinations for both HCl-CO2 and HCl-He. Our analysis shows that these effects are due to incomplete or ongoing collisions, which govern the dipole auto-correlation function at very short times. The effects of these ongoing collisions strongly depend on the details of the intermolecular potential: they are negligible for HCl-He but significant for HCl-CO2 for which a line-shape model beyond the impact approximation will be needed to correctly model the absorption spectra from the center to the far wings.

2.
Sensors (Basel) ; 23(9)2023 Apr 27.
Article in English | MEDLINE | ID: mdl-37177547

ABSTRACT

The use of optical circular multipass absorption cells (CMPAC) in an open-path configuration enables the sampling free analysis of cylindrical gas flows with high temporal resolution and only minimal disturbances to the sample gas in the pipe. Combined with their robust unibody design, CMPACs are a good option for many applications in atmospheric research and industrial process monitoring. When deployed in an open-path configuration, the effects of inhomogeneities in the gas temperature and composition have to be evaluated to ensure that the resulting measurement error is acceptable for a given application. Such an evaluation needs to consider the deviations caused by spectroscopic effects, e.g., nonlinear effects of temperature variations on the intensity of the spectral line, as well as the interaction of the temperature and concentration field with the characteristic laser beam pattern of the CMPAC. In this work we demonstrate this novel combined evaluation approach for the CMPAC used as part of the tunable diode laser absorption spectroscopy (TDLAS) reference hygrometer in PTB's dynH2O setup for the characterization of the dynamic response behavior of hygrometers. For this, we measured spatially resolved, 2D temperature and H2O concentration distributions, and combined them with spatially resolved simulated spectra to evaluate the inhomogeneity effects on the line area of the used H2O spectral line at 7299.43 cm-1. Our results indicate that for dynH2O, the deviations caused by the interaction between large concentration heterogeneities and the characteristic sampling of the beam pattern of the CMPAC are three orders of magnitude larger than deviations caused by small temperature heterogeneity induced spectroscopic effects. We also deduce that the assumption that the "path-integrated" H2O concentration derived with the open-path CMPAC setup represents an accurate H2O area average in the flow section covered by the CMPAC in fact shows significant differences of up to 16% and hence does not hold true when large H2O concentration gradients are present.

3.
Anal Chem ; 95(12): 5354-5361, 2023 Mar 28.
Article in English | MEDLINE | ID: mdl-36913630

ABSTRACT

Intramolecular or position-specific carbon isotope analysis of propane (13CH3-12CH2-12CH3 and 12CH3-13CH2-12CH3) provides unique insights into its formation mechanism and temperature history. The unambiguous detection of such carbon isotopic distributions with currently established methods is challenging due to the complexity of the technique and the tedious sample preparation. We present a direct and nondestructive analytical technique to quantify the two singly substituted, terminal (13Ct) and central (13Cc), propane isotopomers, based on quantum cascade laser absorption spectroscopy. The required spectral information on the propane isotopomers was first obtained using a high-resolution Fourier-transform infrared (FTIR) spectrometer and then used to select suitable mid-infrared regions with minimal spectral interference to obtain the optimum sensitivity and selectivity. We then measured high-resolution spectra around 1384 cm-1 of both singly substituted isotopomers by mid-IR quantum cascade laser absorption spectroscopy using a Stirling-cooled segmented circular multipass cell (SC-MPC). The spectra of the pure propane isotopomers were acquired at both 300 and 155 K and served as spectral templates to quantify samples with different levels of 13C at the central (c) and terminal (t) positions. A prerequisite for the precision using this reference template fitting method is a good match of amount fraction and pressure between the sample and templates. For samples at natural abundance, we achieved a precision of 0.33 ‰ for δ13Ct and 0.73 ‰ for δ13Cc values within 100 s integration time. This is the first demonstration of site-specific high-precision measurements of isotopically substituted non-methane hydrocarbons using laser absorption spectroscopy. The versatility of this analytical approach may open up new opportunities for the study of isotopic distribution of other organic compounds.

4.
Phys Chem Chem Phys ; 25(15): 10343-10352, 2023 Apr 12.
Article in English | MEDLINE | ID: mdl-36988150

ABSTRACT

Super-Lorentzian effects in the troughs between lines and the pressure dependence of the line intensities retrieved from fits of absorption spectra of pure HCl have been investigated both experimentally and theoretically. For that, spectra of pure HCl gas in the 2-0 band were recorded with a Fourier Transform spectrometer at room temperature and for pressures ranging from 1 to 10 atm. The line intensities, retrieved from fits of the measurements with the Voigt profile using a single spectrum fitting technique, reveal large decreases with increasing pressure - up to 3% per atm - with a relatively weak rotational dependence. We also show that the absorptions in-between successive P and R transitions are significantly larger than those predicted using Voigt profiles. Requantized classical molecular dynamics simulations were made in order to predict absorption spectra of pure HCl matching the experimental conditions. The pressure dependence of the intensities retrieved from the calculated spectra as well as the predicted super-Lorentzian behavior between lines are in good agreement with the measurements. Our analysis shows that these effects are essentially due to incomplete collisions, which govern the dipole auto-correlation function at very short times.

5.
Phys Rev Lett ; 129(4): 043002, 2022 Jul 22.
Article in English | MEDLINE | ID: mdl-35939021

ABSTRACT

Intensities of lines in the near-infrared second overtone band (3-0) of ^{12}C^{16}O are measured and calculated to an unprecedented degree of precision and accuracy. Agreement between theory and experiment to better than 1‰ is demonstrated by results from two laboratories involving two independent absorption- and dispersion-based cavity-enhanced techniques. Similarly, independent Fourier transform spectroscopy measurements of stronger lines in this band yield mutual agreement and consistency with theory at the 1‰ level. This set of highly accurate intensities can provide an intrinsic reference for reducing biases in future measurements of spectroscopic peak areas.


Subject(s)
Spectroscopy, Fourier Transform Infrared
6.
Analyst ; 146(4): 1402-1413, 2021 Feb 21.
Article in English | MEDLINE | ID: mdl-33404022

ABSTRACT

Biomethane is a renewable energy gas with great potential to contribute to the diversification and greening of the natural gas supply. Ideally, biomethane can directly be injected into the natural gas grid system. For grid injection, specifications such as those in EN 16723-1 shall be met. One of the impurities to be monitored is hydrogen chloride (HCl). To assess conformity with the specification for HCl, accurate and reliable test methods are required. Here, we report the development of three novel test methods, based on a variety of laser absorption spectroscopy techniques (Direct absorption spectroscopy-DAS and wavelength modulation spectroscopy-WMS) and ion-exchange chromatography, for the measurement of HCl in biomethane. Gas mixtures of HCl in biomethane were used to demonstrate the performance of the spectroscopic systems in the nmol mol-1 to low µmol mol-1 ranges, achieving uncertainties in the 4% range, k = 2. For ion-exchange chromatography analysis, HCl was first collected on an alkali-impregnated quartz fiber filter. The analysis was performed according to ISO 21438-2 and validated using synthetic biomethane spiked with HCl. The relative expanded uncertainties for the ion exchange chromatography HCl measurements are in the 10-37% range, k = 2. The results presented for the 3 test methods demonstrate that the respective methods can be used for HCl conformity assessment in biomethane.

7.
Rev Sci Instrum ; 91(4): 045120, 2020 Apr 01.
Article in English | MEDLINE | ID: mdl-32357726

ABSTRACT

We describe a new tunable diode laser (TDL) absorption instrument, the Chicago Water Isotope Spectrometer, designed for measurements of vapor-phase water isotopologues in conditions characteristic of the upper troposphere [190-235 K temperature and 2-500 parts per million volume (ppmv) water vapor]. The instrument is primarily targeted for measuring the evolving ratio of HDO/H2O during experiments in the "Aerosol Interaction and Dynamics in the Atmosphere" (AIDA) cloud chamber. The spectrometer scans absorption lines of both H2O and HDO near the 2.64 µm wavelength in a single current sweep, increasing the accuracy of isotopic ratio measurements. At AIDA, the instrument is configured with a 256-m path length White cell for in situ measurements, and effective sensitivity can be augmented by enhancing the HDO content of chamber water vapor by an order of magnitude. The instrument has participated to date in the 2012-2013 IsoCloud campaigns studying isotopic partitioning during the formation of cirrus clouds and in the AquaVIT-II instrument intercomparison campaign. Realized precisions for 1-s measurements during these campaigns were 22 ppbv for H2O and 16 ppbv for HDO, equivalent to relative precisions of less than 0.5% for each species at 8 ppmv water vapor. The 1-s precision of the [HDO]/[H2O] ratio measurement ranged from 1.6‰ to 5.6‰ over the range of experimental conditions. H2O measurements showed agreement with calculated saturation vapor pressure to within 1% in conditions of sublimating ice and agreement with other AIDA instruments (the AIDA SP-APicT reference TDL instrument and an MBW 373LX chilled mirror hygrometer) to within 2.5% and 3.8%, respectively, over conditions suitable for all instruments (temperatures from 204 K to 234 K and H2O content equivalent to 15-700 ppmv at 200 hPa).

8.
Appl Spectrosc ; 72(6): 853-862, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29264926

ABSTRACT

The effects of thermal boundary layers on tunable diode laser absorption spectroscopy (TDLAS) measurement results must be quantified when using the line-of-sight (LOS) TDLAS under conditions with spatial temperature gradient. In this paper, a new methodology based on spectral simulation is presented quantifying the LOS TDLAS measurement deviation under conditions with thermal boundary layers. The effects of different temperature gradients and thermal boundary layer thickness on spectral collisional widths and gas concentration measurements are quantified. A CO2 TDLAS spectrometer, which has two gas cells to generate the spatial temperature gradients, was employed to validate the simulation results. The measured deviations and LOS averaged collisional widths are in very good agreement with the simulated results for conditions with different temperature gradients. We demonstrate quantification of thermal boundary layers' thickness with proposed method by exploitation of the LOS averaged the collisional width of the path-integrated spectrum.

9.
Faraday Discuss ; 200: 229-249, 2017 08 24.
Article in English | MEDLINE | ID: mdl-28574551

ABSTRACT

IAGOS (In-service Aircraft for a Global Observing System) performs long-term routine in situ observations of atmospheric chemical composition (O3, CO, NOx, NOy, CO2, CH4), water vapour, aerosols, clouds, and temperature on a global scale by operating compact instruments on board of passenger aircraft. The unique characteristics of the IAGOS data set originate from the global scale sampling on air traffic routes with similar instrumentation such that the observations are truly comparable and well suited for atmospheric research on a statistical basis. Here, we present the analysis of 15 months of simultaneous observations of relative humidity with respect to ice (RHice) and ice crystal number concentration in cirrus (Nice) from July 2014 to October 2015. The joint data set of 360 hours of RHice-Nice observations in the global upper troposphere and tropopause region is analysed with respect to the in-cloud distribution of RHice and related cirrus properties. The majority of the observed cirrus is thin with Nice < 0.1 cm-3. The respective fractions of all cloud observations range from 90% over the mid-latitude North Atlantic Ocean and the Eurasian Continent to 67% over the subtropical and tropical Pacific Ocean. The in-cloud RHice distributions do not depend on the geographical region of sampling. Types of cirrus origin (in situ origin, liquid origin) are inferred for different Nice regimes and geographical regions. Most importantly, we found that in-cloud RHice shows a strong correlation to Nice with slightly supersaturated dynamic equilibrium RHice associated with higher Nice values in stronger updrafts.

10.
Proc Natl Acad Sci U S A ; 114(22): 5612-5617, 2017 05 30.
Article in English | MEDLINE | ID: mdl-28495968

ABSTRACT

The stable isotopologues of water have been used in atmospheric and climate studies for over 50 years, because their strong temperature-dependent preferential condensation makes them useful diagnostics of the hydrological cycle. However, the degree of preferential condensation between vapor and ice has never been directly measured at temperatures below 233 K (-40 °C), conditions necessary to form cirrus clouds in the Earth's atmosphere, routinely observed in polar regions, and typical for the near-surface atmospheric layers of Mars. Models generally assume an extrapolation from the warmer experiments of Merlivat and Nief [Merlivat L, Nief G (1967) Tellus 19:122-127]. Nonequilibrium kinetic effects that should alter preferential partitioning have also not been well characterized experimentally. We present here direct measurements of HDO/H2O equilibrium fractionation between vapor and ice ([Formula: see text]) at cirrus-relevant temperatures, using in situ spectroscopic measurements of the evolving isotopic composition of water vapor during cirrus formation experiments in a cloud chamber. We rule out the recent proposed upward modification of [Formula: see text], and find values slightly lower than Merlivat and Nief. These experiments also allow us to make a quantitative validation of the kinetic modification expected to occur in supersaturated conditions in the ice-vapor system. In a subset of diffusion-limited experiments, we show that kinetic isotope effects are indeed consistent with published models, including allowing for small surface effects. These results are fundamental for inferring processes on Earth and other planets from water isotopic measurements. They also demonstrate the utility of dynamic in situ experiments for studying fractionation in geochemical systems.

11.
J Chem Phys ; 146(19): 194305, 2017 May 21.
Article in English | MEDLINE | ID: mdl-28527465

ABSTRACT

Using previously recorded spectra of HCl diluted in Ar gas at room temperature for several pressure conditions, we show that the absorptions in between successive P and R transitions are significantly different from those predicted using purely Lorentzian line shapes. Direct theoretical predictions of the spectra are also made using requantized classical molecular dynamics simulations and an input HCl-Ar interaction potential. They provide the time evolution of the dipole auto-correlation function (DAF) whose Fourier-Laplace transform yields the absorption spectrum. These calculations very well reproduce the observed super-Lorentzian behavior in the troughs between the intense lines in the central part of the band and the tendency of absorption to become sub-Lorentzian in the band wings between high J lines. The analysis shows that the former behavior is essentially due to incomplete collisions which govern the DAF at very short times. In addition, the increasing influence of line-mixing when going away from the band center explains the tendency of absorption to become more and more sub-Lorentzian in the wings.

12.
Appl Opt ; 56(11): E84-E93, 2017 Apr 10.
Article in English | MEDLINE | ID: mdl-28414334

ABSTRACT

We report on an interband cascade laser (ICL)-absorption spectrometer for absolute, calibration-free, atmospheric CO amount fraction measurements, addressing direct traceability of the results. The system combines first-principles direct tunable diode laser absorption spectroscopy (dTDLAS) with a metrological validation. Using a multipath cell with 76 m path length, our detection limit is 0.5 nmol/mol at Δt=14 s. The system is highly linear (slope: 0.999±0.008) in the amount fraction range of 0.1-1000 µmol/mol and thus is interesting for industrial as well as environmental applications. The sensor repeatability at 300 nmol/mol is 0.06 nmol/mol (with Δt=10 min). The sensor's absolute response is in excellent agreement with the gravimetric values of a set of primary gas standards used to test the sensor accuracy. The relative expanded uncertainty (k=2) of the measured CO amount fraction is 2.8%. Due to this performance and the calibration-free approach, the spectrometer may be used as an optical transfer standard (OTS) if gas standards are for whatever reason not available or applicable, e.g., for airborne instruments. Our dTDLAS approach has shown excellent stability and accuracy in H2O detection [Appl. Phys. B116, 883 (2014)APPCDL0721-726910.1007/s00340-014-5775-4] even when compared to primary standards. We therefore deduce that the ICL spectrometer (after its adaptation to field conditions, similar to our H2O spectrometers) has good potential to meet the 2 nmol/mol compatibility goal stated by the World Meteorological Organization for atmospheric CO measurements, and serve as an OTS which does not need frequent calibrations using reference gases.

13.
Appl Opt ; 56(11): E99-E105, 2017 Apr 10.
Article in English | MEDLINE | ID: mdl-28414347

ABSTRACT

Nitrous oxide (N2O) is a key greenhouse gas and a major ozone-depleting anthropogenic pollutant monitored by the total carbon column observing network (TCCON) in the 0002-0000-band of its main isotopologue. Here, we present highly accurate line strengths for this window determined using Fourier transform infrared spectroscopy with pressure, temperature, and optical path length being metrologically traceable to the SI. The obtained results agree with previous studies within the given uncertainties. Depending on the respective rovibrational transition, the present uncertainties could be reduced by a factor of 5 to 83 in comparison to literature data.

14.
Appl Spectrosc ; 71(5): 888-900, 2017 May.
Article in English | MEDLINE | ID: mdl-27402685

ABSTRACT

We report a new direct tunable diode laser absorption spectroscopy (dTDLAS) sensor for absolute measurements of H2O in methane, ethane, propane, and low CO2 natural gas. The sensor is operated with a 2.7 µm DFB laser, equipped with a high pressure single pass gas cell, and used to measure H2O amount of substance fractions in the range of 0.31-25 000 µmol/mol. Operating total gas pressures are up to 5000 hPa. The sensor has been characterized, addressing the traceability of the spectrometric results to the SI and the evaluation of the combined uncertainty, following the guide to the expression of uncertainty in measurement (GUM). The relative reproducibility of H2O amount of substance fraction measurements at 87 µmol/mol is 0.26% (0.23 µmol/mol). The maximum precision of the sensor was determined using a H2O in methane mixture, and found to be 40 nmol/mol for a time resolution of 100 s. This corresponds to a normalized detection limit of 330 nmol mol-1·m Hz-1/2. The relative combined uncertainty of H2O amount fraction measurements delivered by the sensor is 1.2%.

15.
Rev Sci Instrum ; 87(2): 023111, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26931838

ABSTRACT

We present the design, setup, and characterization of a new lens-free fibre-coupled miniature White cell for extractive gas analysis using direct tunable diode laser absorption spectroscopy (dTDLAS). The construction of this cell is based on a modified White cell design and allows for an easy variation of the absorption length in the range from 29 cm to 146 cm. The design avoids parasitic absorption paths outside the cell by using direct, lensless fibre coupling and allows small physical cell dimensions and cell volumes. To characterize the cell performance, different H2O and CH4 concentration levels were measured using dTDLAS. Detection limits of 2.5 ppm ⋅ m for CH4 (at 1.65 µm) and 1.3 ppm ⋅ m for H2O (at 1.37 µm) were achieved. In addition, the gas exchange time and its flow-rate dependence were determined for both species and found to be less than 15 s for CH4 and up to a factor of thirteen longer for H2O.

16.
Sensors (Basel) ; 17(1)2016 Dec 30.
Article in English | MEDLINE | ID: mdl-28042844

ABSTRACT

Instrument operation in harsh environments often significantly impacts the trust level of measurement data. While commercial instrument manufacturers clearly define the deployment conditions to achieve trustworthy data in typical standard applications, it is frequently unavoidable in scientific field applications to operate instruments outside these commercial standard application specifications. Scientific instrumentation, however, is employing cutting-edge technology and often highly optimized but also lacks long-term field tests to assess the field vs. laboratory performance. Recently, we developed the Selective Extractive Laser Diode Hygrometer (SEALDH-II), which addresses field and especially airborne applications as well as metrological laboratory validations. SEALDH-II targets reducing deviations between airborne hygrometers (currently up to 20% between the most advanced hygrometers) with a new holistic, internal control and validation concept, which guarantees the transfer of the laboratory performance into a field scenario by capturing more than 80 instrument internal "housekeeping" data to nearly perfectly control SEALDH-II's health status. SEALDH-II uses a calibration-free, first principles based, direct Tuneable Diode Laser Absorption Spectroscopy (dTDLAS) approach, to cover the entire atmospheric humidity measurement range from about 3 to 40,000 ppmv with a calculated maximum uncertainty of 4.3% ± 3 ppmv. This is achieved not only by innovations in internal instrument monitoring and design, but also by active control algorithms such as a high resolution spectral stabilization. This paper describes the setup, working principles, and instrument stabilization, as well as its precision validation and long-term stress tests in an environmental chamber over an environmental temperature and humidity range of ΔT = 50 K and ΔRH = 80% RH, respectively.

17.
Atmos Meas Tech ; 9(9): 4295-4310, 2016.
Article in English | MEDLINE | ID: mdl-28845201

ABSTRACT

The NOAA frost point hygrometer (FPH) is a balloon-borne instrument flown monthly at three sites to measure water vapor profiles up to 28 km. The FPH record from Boulder, Colorado, is the longest continuous stratospheric water vapor record. The instrument has an uncertainty in the stratosphere that is < 6 % and up to 12 % in the troposphere. A digital microcontroller version of the instrument improved upon the older versions in 2008 with sunlight filtering, better frost control, and resistance to radio frequency interference (RFI). A new thermistor calibration technique was implemented in 2014, decreasing the uncertainty in the thermistor calibration fit to less than 0.01 °C over the full range of frost - or dew point temperatures (-93 to +20 °C) measured during a profile. Results from multiple water vapor intercomparisons are presented, including the excellent agreement between the NOAA FPH and the direct tunable diode laser absorption spectrometer (dTDLAS) MC-PicT-1.4 during AquaVIT-2 chamber experiments over 6 days that provides confidence in the accuracy of the FPH measurements. Dual instrument flights with two FPHs or an FPH and a cryogenic frost point hygrometer (CFH) also show good agreement when launched on the same balloon. The results from these comparisons demonstrate the high level of accuracy of the NOAA FPH.

18.
Appl Spectrosc ; 69(2): 257-68, 2015.
Article in English | MEDLINE | ID: mdl-25658222

ABSTRACT

Simultaneous detection of two analytes, carbon dioxide (CO2) and water vapor (H2O), has been realized using tunable diode laser absorption spectroscopy (TDLAS) with a single distributed feedback diode laser at 2.7 µm. The dynamic range of the spectrometer is extended from the low parts per million to the percentage range using two gas cells, a single-pass cell with 0.77 m, and a Herriott-type multipass cell with 76 m path length. Absolute measurements were carried out, i.e., amount fractions of the analytes were calculated based on previously determined spectral line parameters, without the need for an instrument calibration using gas standards. A thorough metrological characterization of the spectrometer is presented. We discuss traceability of all parameters used for amount fraction determination and provide a comprehensive uncertainty assessment. Relative expanded uncertainties (k = 2, 95% confidence level) of the measured amount fractions are shown to be in the 2-3% range for both analytes. Minimum detectable amount fractions are 0.16 µmol/mol for CO2 and 1.1 µmol/mol for H2O for 76 m path length and 5 s averaging time. This corresponds to normalized detection limits of 27 µmol/mol m Hz(-1/2) for CO2 and 221 µmol/mol m Hz(-1/2) for H2O. Precision of the spectrometer, determined using Allan variance analysis, is 3.3 nmol/mol for CO2 and 21 nmol/mol for H2O. The spectrometer has been validated using reference gas mixtures with known CO2 and H2O amount fractions. An application example of the absolute TDLAS spectrometer as a reference instrument to validate other sensors is also presented.

19.
Sensors (Basel) ; 14(11): 21497-513, 2014 Nov 14.
Article in English | MEDLINE | ID: mdl-25405508

ABSTRACT

We present a tunable diode laser spectrometer with a novel, rapid time multiplexed direct absorption- and wavelength modulation-spectroscopy operation mode. The new technique allows enhancing the precision and dynamic range of a tunable diode laser absorption spectrometer without sacrificing accuracy. The spectroscopic technique combines the benefits of absolute concentration measurements using calibration-free direct tunable diode laser absorption spectroscopy (dTDLAS) with the enhanced noise rejection of wavelength modulation spectroscopy (WMS). In this work we demonstrate for the first time a 125 Hz time division multiplexed (TDM-dTDLAS-WMS) spectroscopic scheme by alternating the modulation of a DFB-laser between a triangle-ramp (dTDLAS) and an additional 20 kHz sinusoidal modulation (WMS). The absolute concentration measurement via the dTDLAS-technique allows one to simultaneously calibrate the normalized 2f/1f-signal of the WMS-technique. A dTDLAS/WMS-spectrometer at 1.37 µm for H2O detection was built for experimental validation of the multiplexing scheme over a concentration range from 50 to 3000 ppmV (0.1 MPa, 293 K). A precision of 190 ppbV was achieved with an absorption length of 12.7 cm and an averaging time of two seconds. Our results show a five-fold improvement in precision over the entire concentration range and a significantly decreased averaging time of the spectrometer.

SELECTION OF CITATIONS
SEARCH DETAIL
...