Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Theriogenology ; 114: 301-307, 2018 Jul 01.
Article in English | MEDLINE | ID: mdl-29677633

ABSTRACT

Current bovine pregnancy detection methods are not reliable until at least day 28 post artificial insemination (AI). The bovine estrous cycle is approximately 21 days; consequently, producers miss an opportunity to rebreed at the next estrous event. Therefore, commercial interest exists for the discovery of novel biomarkers of pregnancy which could reliably detect pregnancy status at or before day 21 of pregnancy. The objective of the present study was to use liquid chromatography tandem mass spectrometry (LC-MS/MS) to perform a global, label-free, proteomics study on (i) milk whey and (ii) extracellular vesicle (EV) enriched milk whey samples, from day 21 of pregnancy, compared with day 21 of the estrous cycle, in order to identify potential protein biomarkers of early pregnancy. The estrous cycles of 10 dairy cows were synchronized, they went through one (control) estrous cycle and these cows were artificially inseminated during the following estrus. These cows were confirmed pregnant by ultrasound scanning. Milk whey samples were collected on day 21 of the estrous cycle and on day 21 post AI. Milk whey samples and EV enriched milk whey samples were analyzed by LC-MS/MS and subsequent analyzes of the label-free quantitative data was performed in MaxQuant and Perseus. Four proteins (APOB, SPADH1, PLIN2 and LPO) were differentially expressed between the proteomes of milk whey from day 21 of pregnancy and day 21 of the estrous cycle (P < 0.05). Ten proteins (PIGR, PGD, QSOX1, MUC1, SRPRA, MD2, GAPDH, FOLR1, GPRC5B and HHIPL2) were differentially expressed between the proteomes of EV enriched milk whey from day 21 of pregnancy and day 21 of the estrous cycle (P < 0.05). These proteins are potential milk whey biomarkers of early pregnancy.


Subject(s)
Cattle , Estrous Cycle/physiology , Whey Proteins/metabolism , Animals , Female , Gene Expression Regulation/physiology , Pregnancy , Proteome , Transcriptome , Whey Proteins/genetics
2.
Mol Biosyst ; 12(1): 110-9, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26563430

ABSTRACT

MicroiRNAs are genome encoded small double stranded RNAs that regulate expression of homologous mRNAs. With approximately 2500 human miRNAs and each having hundreds of potential mRNA targets, miRNA based gene regulation is quite pervasive in both development and disease. While there are numerous studies investigating miRNA:mRNA and miRNA:protein target expression correlations, there are relatively few studies of miRNA:miRNA co-expression. Here we report on our analysis of miRNA:miRNA co-expression using expression data from the miRNA expression atlas of Landgraf et al. Our analysis indicates that many, but not all, genomically clustered miRNAs are co-expressed as a single pri-miRNA transcript. We have also identified co-expression groups that have similar biological activity. Further, the non-correlative miRNAs we have uncovered have been shown to be of utility in establishing miRNA biomarkers and signatures for certain tumours and cancers.


Subject(s)
Gene Expression Profiling , Gene Expression Regulation , Gene Regulatory Networks , MicroRNAs/genetics , Multigene Family , Transcriptome , Cell Line , Genomics , Humans , Organ Specificity/genetics , RNA, Messenger/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...