Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Viruses ; 16(6)2024 May 29.
Article in English | MEDLINE | ID: mdl-38932163

ABSTRACT

The presence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in wastewater has been reported in several studies and similar research can be used as a proxy for an early warning of potential Coronavirus disease 2019 (COVID-19) outbreaks. This study focused on profiling the incidence of SARS-CoV-2 genomes in wastewater samples obtained from facilities located in the Buffalo City Municipality. Raw samples were collected weekly using the grab technique for a period of 48 weeks. Ribonucleic acids were extracted from the samples, using the QIAGEN Powersoil Total RNA Extraction kit, and extracted RNA samples were further profiled for the presence of SARS-CoV-2 genomes using Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR) technique. Furthermore, various environmental matrices were utilized to estimate the potential health risk to plant operators associated with exposure to SARS-CoV-2 viral particles using the quantitative microbiological risk assessment (QMRA) model. Our findings revealed the prevalence of SARS-CoV-2 genomes with concentrations that ranged from 0.22 × 103 to 17.60 × 103 genome copies per milliliter (GC/mL). Different exposure scenarios were employed for the QMRA model, and the findings indicate a probability of infection (P(i)) ranging from 0.93% to 37.81% across the study sites. Similarly, the P(i) was highly significant (p < 0.001) for the 20 mL volumetric intake as compared to other volumetric intake scenarios, and high P(i) was also observed in spring, autumn, and winter for all WWTPs. The P(i) was significantly different (p < 0.05) with respect to the different seasons and with respect to different volume scenarios.


Subject(s)
COVID-19 , Genome, Viral , SARS-CoV-2 , Wastewater , Wastewater/virology , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , South Africa/epidemiology , COVID-19/epidemiology , COVID-19/virology , COVID-19/transmission , Humans , Risk Assessment , RNA, Viral/genetics , Occupational Exposure , Cities/epidemiology
2.
Pathogens ; 10(9)2021 Aug 31.
Article in English | MEDLINE | ID: mdl-34578143

ABSTRACT

Acinetobacter species have been found in a variety of environments, including soil, food, plants, hospital environments and water. Acinetobacter baumannii is an opportunistic and emerging waterborne pathogen. It has been implicated in several nosocomial infections that demonstrate resistance to commonly administered antibiotics. We investigated phenotypic antibiotic resistance (PAR) and relevant antibiotic resistance genes (ARGs) in A. baumannii isolated from three freshwater resources in the Eastern Cape Province, South Africa; A. baumannii (410) was confirmed by the recA and gyrB genes of 844 suspected Acinetobacter species in the water samples. The PAR of the confirmed isolates was assessed using a panel of 11 antibiotics by the disc diffusion method, while ARGs were investigated in isolates exhibiting PAR. The A. baumannii isolates were resistant to piperacillin-tazobactam (11.2%), ceftazidime (12%), cefotaxime (18.8%), cefepime (8.8%), imipenem (2.7%), meropenem (4.15%), amikacin (2.4%), gentamicin (8.8%), tetracycline (16.8%), ciprofloxacin (11%) and trimethoprim/sulfamethoxazole (20.5%). For multidrug resistance (MDR), two isolates were resistant to all antibiotics and 28 isolates were resistant to imipenem and meropenem. Moreover, ß-lactamases blaTEM (64.4%) and blaOXA-51 (28.70%) as well as sulphonamides sul1 (37.1%) and sul2 (49.4%) were common ARGs. Overall, PAR and ARGs had positive correlations (r) in all rivers. Detection of MDR-A. baumannii in freshwater resources could be linked to possible wastewater discharge from the nearby animal farms, indicating potential implications for public health.

3.
Article in English | MEDLINE | ID: mdl-33435627

ABSTRACT

The prevalence of bacteria with multidrug-resistance (MDR) is a significant threat to public health globally. Listeria spp. are naturally ubiquitous, with L. monocytogenes particularly being ranked as important foodborne disease-causing microorganisms. This study aimed to evaluate the incidence and determine the antimicrobial resistance (AMR) profiles of multidrug-resistant Listeria spp. (MDRL) isolated from different environmental samples (river and irrigation water) in the Sarah Baartman District Municipality (SBDM), Eastern Cape Province (ECP), South Africa. Molecular identification and characterization were carried out using polymerase chain reaction (PCR) and isolates that exhibited phenotypic resistance were further screened for relevant antimicrobial-resistant genes (ARGs). Findings revealed a total of 124 presumptive Listeria isolates; 69 were molecularly confirmed Listeria species. Out of the confirmed species, 41 isolates (59%) were classified as L. monocytogenes while 9 (13%) were classified as L. welshimeri. All Listeria spp. exhibited phenotypic resistance against ampicillin, penicillin, and trimethoprim-sulphamethoxazole and further screening revealed ARGs in the following proportions: sulI (71%), blaTEM (66%), tetA (63%), and blaCIT (33%). Results confirmed the occurrence of ARGs among Listeria inhabiting surface waters of ECP. The present study indicates that the river water samples collected from SBDM are highly contaminated with MDRL, hence, constituting a potential health risk.


Subject(s)
Listeria monocytogenes , Listeria , Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial , Food Microbiology , Listeria/genetics , Listeria monocytogenes/genetics , Microbial Sensitivity Tests , Polymerase Chain Reaction , South Africa/epidemiology
4.
Antibiotics (Basel) ; 9(7)2020 Jul 21.
Article in English | MEDLINE | ID: mdl-32708057

ABSTRACT

Carbapenemase-producing Enterobacteriaceae (CPE) have been heavily linked to hospital acquired infections (HAI) thereby leading to futility of antibiotics in treating infections and this have complicated public health problems. There is little knowledge about carbapenemase-producing Klebsiella spp. (CPK) in South Africa. This study aimed at determining the occurrence of CPK in different samples collected from selected environmental niches (hospitals, wastewater treatment plants, rivers, farms) in three district municipalities located in the Eastern Cape Province, South Africa. Molecular identification and characterization of the presumptive isolates were determined using polymerase chain reaction (PCR) and isolates that exhibited phenotypic carbapenem resistance were further screened for the possibility of harbouring antimicrobial resistance genes. One hundred (43%) of the 234 confirmed Klebsiella spp. isolates harboured carbapenem-resistance genes; 10 isolates harboured blaOXA-48-like; 17 harboured blaKPC; and 73 isolates harboured blaNDM-1. The emergence of blaKPC, blaOXA-48-like, and blaNDM-1 carbapenem-resistance genes in Klebsiella species associated with environmental sources is of great concern to public health.

5.
Heliyon ; 6(5): e03899, 2020 May.
Article in English | MEDLINE | ID: mdl-32420480

ABSTRACT

This article provides an overview of the antibiotic era and discovery of earliest antibiotics until the present day state of affairs, coupled with the emergence of carbapenem-resistant bacteria. The ways of response to challenges of antibiotic resistance (AR) such as the development of novel strategies in the search of new antibiotics, designing more effective preventive measures as well as the ecology of AR have been discussed. The applications of plant extract and chemical compounds like nanomaterials which are based on recent developments in the field of antimicrobials, antimicrobial resistance (AMR), and chemotherapy were briefly discussed. The agencies responsible for environmental protection have a role to play in dealing with the climate crisis which poses an existential threat to the planet, and contributes to ecological support towards pathogenic microorganisms. The environment serves as a reservoir and also a vehicle for transmission of antimicrobial resistance genes hence, as dominant inhabitants we have to gain a competitive advantage in the battle against AMR.

6.
Article in English | MEDLINE | ID: mdl-30018212

ABSTRACT

The prevalence of pathogenic microorganisms, as well as the proliferation of antimicrobial resistance, pose a significant threat to public health. However, the magnitude of the impact of aquatic environs concerning the advent and propagation of resistance genes remains vague. Escherichia coli (E. coli) are widespread and encompass a variety of strains, ranging from non-pathogenic to highly pathogenic. This study reports on the incidence and antibiotic susceptibility profiles of E. coli isolates recovered from the Nahoon beach and its canal waters in South Africa. A total of 73 out of 107 (68.2%) Polymerase chain reaction confirmed E. coli isolates were found to be affirmative for at least one virulence factor. These comprised of enteropathogenic E. coli 11 (10.3%), enteroinvasive E. coli 14 (13.1%), and neonatal meningitis E. coli 48 (44.9%). The phenotypic antibiogram profiles of the confirmed isolates revealed that all 73 (100%) were resistant to ampicillin, whereas 67 (91.8%) of the pathotypes were resistant to amikacin, gentamicin, and ceftazidime. About 61 (83.6%) and 51 (69.9%) were resistant to tetracycline and ciprofloxacin, respectively, and about 21.9% (16) demonstrated multiple instances of antibiotic resistance, with 100% exhibiting resistance to eight antibiotics. The conclusion from our findings is that the Nahoon beach and its canal waters are reservoirs of potentially virulent and antibiotic-resistant E. coli strains, which thus constitute a potent public health risk.


Subject(s)
Escherichia coli/isolation & purification , Water Pollutants/isolation & purification , Anti-Bacterial Agents/pharmacology , Bathing Beaches , Drug Resistance, Microbial , Environmental Monitoring , Escherichia coli/drug effects , Escherichia coli/genetics , Humans , Microbial Sensitivity Tests , Public Health , South Africa , Virulence Factors/genetics , Water Microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...