Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Biology (Basel) ; 9(8)2020 Jul 23.
Article in English | MEDLINE | ID: mdl-32717802

ABSTRACT

Seed deterioration is an important topic in plant science, as the majority of cultivated species use seeds as their means of propagation; however, due to its complexity, the process of seed deterioration has not yet been completely elucidated. Three soybean cultivars (BMX Raio, BMX Zeus, and DM 53i54) exposed to four distinct periods of accelerated aging (0, 3, 6 and 9 days) in a fully randomized experimental design. Initially, vigor and germination tests were performed. The activity of superoxide dismutase, catalase, ascorbate peroxidase enzymes, hydrogen peroxide, malonaldehyde, DNA oxidation, macromolecules and mineral content, and Maillard reactions were quantified in the embryonic axis. Results showed that DNA did not suffer degradation or oxidation. In terms of consumption of reserves, only sugars were consumed, while levels of protein, starch, and triglycerides were maintained. The Maillard reaction did show potential as an indicator of buffer capacity of protein to ROS. Additionally, levels of catalase and ascorbate peroxidase decreased during the aging process. Moreover, nutrient analysis showed that a high magnesium level in the cultivar bestowed greater resilience to deterioration, which can indicate a potential function of magnesium in the cell structure via reflex in seed aging through seed respiration.

2.
Plant Physiol Biochem ; 145: 34-42, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31665665

ABSTRACT

Seed deterioration is a partially elucidated phenomenon that happen during the life of the seed. This review describes the processes that lead to seed deterioration, including loss of seed protection capacity against reactive oxygen species (ROS), damage to the plasma membrane, consumption of reserves, and damage to genetic material. A hypothesis of how seed deterioration occurs was also addressed; in this hypothesis, seed deterioration was divided into three phases. The first is the beginning of deterioration, with a slight reduction of vigor caused by the reactions of reducing sugars with antioxidant enzymes and genetic material. In the second, the cell shows oxidative damages, causing lipid peroxidation, which leads to the leaching of solutes, the formation of malondialdehyde, and, consequently, an increase in damages to genetic material. In the third phase, there is cell collapse with mitochondrial membrane deconstruction and a high accumulation of reactive oxygen species, malondialdehyde, and reducing sugars.


Subject(s)
Seeds , DNA Damage , Lipid Peroxidation , Malondialdehyde , Oxidation-Reduction , Oxidoreductases/metabolism , Reactive Oxygen Species , Seeds/physiology , Sugars/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...