Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Environ Sci Pollut Res Int ; 30(14): 41682-41699, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36637651

ABSTRACT

This study investigated the possible protective role of mulberry leaf (MLE) and olive leaf (OLE) ethanolic extracts against paracetamol (PTL)-induced liver injury in rats compared to silymarin as a reference drug. Initially, MLE and OLE were characterized using gas chromatography-mass spectrometry (GC/MS). Then, forty male Sprague Dawley rats were divided into five groups: the negative control group orally received distilled water for 35 days, the PTL-treated group (PTG) received 500 mg PTL/kg b. wt. for 7 days, the MLE-treated group (MLTG) received 400 mg MLE/kg b. wt., the OLE-treated group (OLTG) received 400 mg OLE/kg b. wt., and the silymarin-treated group (STG) received 100 mg silymarin/kg b. wt. The last three groups received the treatment for 28 days, then PTL for 7 days. The GC-MS characterization revealed that MLE comprised 19 constituents dominated by ethyl linoleate, phytol, hexadecanoic acid, ethyl ester, and squalene. Moreover, OLE comprised 30 components, and the major components were 11-eicosenoic acid, oleic acid, phytol, and à-tetralone. MLE and OLE significantly corrected the PTL-induced normocytic normochromic anemia, leukocytosis, hypercholesterolemia, and hypoproteinemia. Moreover, the MLE and OLE pretreatment considerably suppressed the PTL-induced increment in serum levels of hepatic enzymes, including alkaline phosphatase, alanine aminotransferase, and aspartate aminotransferase. Furthermore, the PTL-induced depletion in antioxidant enzymes, including glutathione peroxidase, superoxide dismutase, and catalase, and the rise in hepatic malondialdehyde content were significantly reversed by the MLE and OLE pretreatment. Besides, MLE and OLE pretreatment significantly protected the hepatic tissue against PTL-induced DNA damage, pathological perturbations, and increased caspase 3 and CYP2E1 immunoexpression. Of note, OLTG showed better enhancement of most indices rather than MLTG. Conclusively, these findings imply that OLE, with its antioxidant and antiapoptotic capabilities, is superior to MLE in protecting against PTL-induced liver injury.


Subject(s)
Chemical and Drug Induced Liver Injury, Chronic , Chemical and Drug Induced Liver Injury , Morus , Olea , Silymarin , Rats , Male , Animals , Antioxidants/pharmacology , Acetaminophen/toxicity , Acetaminophen/analysis , Caspase 3 , Cytochrome P-450 CYP2E1 , Rats, Sprague-Dawley , Oxidative Stress , Liver , Plant Leaves/chemistry , Plant Extracts/chemistry
2.
Life Sci ; 279: 119674, 2021 Aug 15.
Article in English | MEDLINE | ID: mdl-34081992

ABSTRACT

One of the global alarming prevalent metabolic diseases is Type 2 diabetes mellitus (T2DM) than other diabetes and sustains a substantial burden on public and healthcare systems. This study attempts to endeavor the beneficial effect of chitosan stabilized nanoparticles Ch-SeNPs on combating diabetic nephropathy (DN) after induction of T2DM in rats (DN.STZ-induced T2D). High-fat diet (HFD) and STZ were used for the induction of T2DM in rats, and then they were treated with either metformin alone (MEF) (500 mg/kg b.wt.) or combined with (Ch-SeNPs) (2 mg Se/kg b.wt.) for eight weeks. The microvascular complications in renal tissue of diabetic rats were pronounced by the prevalence of microalbuminuria and elevated levels of urea, creatinine, and BUN. Pronounced oxidative stress with enhanced inflammatory response. In the urine of diabetic rats, a marked increase in Kim 1, ß2-microglobulin, and urinary albumin. Renal morphological alterations were observed in all groups upon induction of T2DM, except for the Ch-SeNPs/MEF group showed noticeable improvements. The expression levels of Aldo-keto reductase AKr1B1, profibrotic protein transforming growth factor-ß1 (TGF-ß1), nestin, desmin, and vimentin, were up-regulated in the diabetic group. Significant down-regulation of their expression and restored antioxidant capacity was observed in the combined-treated group than single treated ones. Ch-SeNPs helped limit the prevalence of TNF-α, IL-6, and IL-1ß while used after T2DM induction by STZ and HFD. Ch-SeNPs/MEF co-therapy could effectively guard the kidneys and reduce the renal tissue injury via inhibiting oxidative stress and restoring glucose hemostasis, which indicates a promising line for treating T2DM nephropathy.


Subject(s)
Aldehyde Reductase/metabolism , Chitosan/chemistry , Diabetes Mellitus, Experimental/complications , Diabetic Nephropathies/drug therapy , Kidney/drug effects , Nanoparticles/administration & dosage , Selenium/chemistry , Aldehyde Reductase/genetics , Animals , Diabetic Nephropathies/etiology , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/pathology , Gene Expression Regulation , Kidney/injuries , Kidney/metabolism , Kidney/pathology , Kidney Function Tests , Male , Nanoparticles/chemistry , Rats , Rats, Sprague-Dawley
3.
Front Pharmacol ; 12: 651497, 2021.
Article in English | MEDLINE | ID: mdl-33986679

ABSTRACT

Boldenone Undecylenate (BLD) is a synthetic derivative of testosterone and a widely used anabolic androgenic steroid. The health risk of BLD use as a pharmaceutical or dietary supplement is still underestimated and under-reported. Vitamin C (VC) has been recognized as an antioxidant with prominent hepatorenal protective effects. This study investigated the possible preventive activity of VC against BLD-induced hepatorenal damage. Forty adult male Wistar rats were classified into five groups: control, vehicle control, VC (orally given 120 mg/kg b. wt./day), BLD (intramuscularly injected 5 mg/kg b. wt./week), and BLD + VC-treated groups. The experiment continued for eight weeks. Serum levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were measured. Serum contents of total protein (TP), albumin (ALB), globulin, total cholesterol (TC), triglycerides (TG), high-density lipoprotein-cholesterol (HDL-C), low-density lipoprotein-cholesterol (LDL-C), and very-low-density lipoprotein-cholesterol (VLDL-C) were also assayed. Urea, creatinine, and uric acid levels were determined together with sodium and potassium electrolytes measuring. Moreover, oxidative stress indicators including reduced glutathione (GSH), glutathione peroxidase (GPx), glutathione-S-transferase (GST), and glutathione reductase (GSR) as well as malondialdehyde (MDA) levels were measured in both hepatic and renal tissues. Corresponding histological examination of renal and hepatic tissues was conducted. Besides, immunohistochemical evaluations for androgen receptors protein (AR) and heat shock protein 90 (Hsp 90) expressions were performed. BLD caused significant rises in serum ALT, AST, TP, ALB, TC, TG, LDL-C, VLDL-C, urea, creatinine, uric acid, potassium, and MDA levels. Further, BLD-injected rats showed significant declines in the serum levels of HDL-C, sodium, GSH, GPx, GST, and GSR. Besides, distinct histopathological perturbations were detected in renal and hepatic tissues of BLD-injected rats. AR and Hsp 90 immunoexpression were increased in hepatic and renal tissues. In contrast, VC significantly reversed the BLD-induced hepatorenal damage in co-treated rats but not ameliorated AR protein overexpression. VC could be an efficient preventive supplement for mitigating BLD-induced hepatorenal damage, possibly via controlling oxidative stress events.

4.
Life Sci ; 254: 117782, 2020 Aug 01.
Article in English | MEDLINE | ID: mdl-32407847

ABSTRACT

AIMS: This study assessed the prophylactic or therapeutic effects of taurine (TR) and/or hesperidin (HES) on carbon tetrachloride (CCl4) induced acute kidney and testicular injury in rats. MAIN METHODS: Rats were randomly divided into nine experimental groups including control; corn oil; CCl4; HES/CCl4; TR/CCl4; HES + TR/CCl4; CCl4/HES; CCl4/TR; and CCl4/HES + TR groups. CCl4 was intraperitoneally injected with a single dose of 2 ml /kg b.w. HES and TR were orally gavaged twice weekly 100 mg/kg b.w. for four weeks. Kidney function, inflammatory response, sexual hormones, and oxidative stress indicators were assessed. Histomorphological and immune-histochemical studies of the inflammatory marker nuclear factor kappa (NF-κB) in renal and testicular tissues were performed. KEY FINDINGS: The results showed that the TR and/or HES treatment significantly suppressed CCl4 induced rise of urea, uric acid, potassium, and follicle-stimulating hormone levels. However, significant restoration of sodium, testosterone, and luteinizing hormone was apparent in CCl4 exposed rats received HES and/or TR. Also, the HES and/or TR treatment significantly rescues CCl4 induced oxidative stress and inflammation. Moreover, the HES and/or TR dosing significantly repaired the CCl4 evoked altered renal and testicular architecture and suppressed NF-κB immunoexpression. Notably, alleviating CCl4 induced renal and testicular damage was more effective in the prophylactic groups than the therapeutic groups. Also, most of the estimated parameters of the HES + TR group did not significantly vary from those of single TR or HES. SIGNIFICANCE: In conclusion, HES or TR could efficiently guard against CCl4 nephro-and reprotoxic effects, but both bioactive combinations afford only a limited synergistic outcome.


Subject(s)
Hesperidin/pharmacology , Inflammation/prevention & control , Kidney/metabolism , Oxidative Stress/drug effects , Taurine/pharmacology , Testis/metabolism , Animals , Carbon Tetrachloride , Drug Synergism , Follicle Stimulating Hormone/metabolism , Kidney/pathology , Luteinizing Hormone/metabolism , Male , NF-kappa B/metabolism , Potassium/metabolism , Rats , Sodium/metabolism , Testis/pathology , Testosterone/metabolism , Urea/metabolism , Uric Acid/metabolism
5.
Aquat Toxicol ; 224: 105493, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32408004

ABSTRACT

Currently, the contamination of water with different insecticides like profenofos (PFF) is a critical concern in the aquatic ecosystem. There are limited studies available on the negative impacts of PFF on common carp fish (Cyprinus carpio L.). Therefore, the existing study was designed to investigate the effect of PFF exposure (1/10 of the 96 h-LC50) on the neurobehavior, growth performance, chemical composition, oxidative status, DNA damage, apoptotic status and histological indices of the brain and gill tissues. In addition, this study seeks to detect the ability of geranium essential oil (GEO) dietary supplementation to mitigate the negative impacts of PFF. Accordingly, a total of 120 healthy fish were divided into four groups: the control group, fed on basal diet only; the other groups were fed on a basal diet supplemented with 400 mg kg-1 GEO, basal diet and PFF in water (PFF group), and supplemented diet with GEO and PFF in water (GEO + PFF), respectively, for 60 days. The results showed that PFF significantly reduced fish growth performance, crude protein, and lipid contents. It caused several behavioral alterations including spiral movement, decreased activeness, and changes in feeding behavior. Moreover, PFF increased the DNA tail length, tail moment, and the level of 8-hydroxy-2'-deoxyguanosine. Histologically, PFF induced a wide array of circulatory, inflammatory, regressive and progressive alterations in the brain and gill tissues. PFF significantly downregulated Bcl-2 and upregulated caspase-3 immuno-expression in both organs. Further, it considerably depleted the antioxidant enzymes, including superoxide dismutase, catalase, and glutathione peroxidase. The GEO supplementation did not reach the respective control values but markedly improved most of the behavioral, physical, biochemical, oxidative, apoptotic, and inflammatory markers, altered by PFF exposure. It also protected the gill and brain tissues from the branchial and encephalopathic effects of PFF. These findings suggest that GEO dietary supplements could be advantageous for mitigating PFF negative impacts and presenting a promising feed additive for common carp in aquaculture.


Subject(s)
Apoptosis/drug effects , Behavior, Animal/drug effects , Brain/drug effects , Carps , DNA Damage/drug effects , Geranium/chemistry , Oils, Volatile/pharmacology , Organothiophosphates/toxicity , Water Pollutants, Chemical/toxicity , Animals , Antioxidants/metabolism , Aquaculture , Brain/enzymology , Brain/pathology , Carps/genetics , Carps/metabolism , Diet , Dietary Supplements , Ecosystem , Gills/drug effects , Gills/enzymology , Gills/pathology , Oils, Volatile/isolation & purification
6.
Aquat Toxicol ; 220: 105406, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31945653

ABSTRACT

Currently, feed adulteration and contamination with melamine (MEL) are considered one of the serious issues in the aquatic industry. With the limited studies of MEL exposure alone in fish, its adverse impacts on fish cannot be evaluated well. Accordingly, this study aimed to investigate the effects of MEL containing diets on the immune response, disease resistance to Aeromonas hydrophila, growth performance, chemical composition, immune-related genes expression, and histopathology of both spleen and head kidneys. Also, the efficacy of curcumin (CUR) dietary supplementation to alleviate MEL negative impacts were evaluated. A total of 180 apparently healthy Oreochromis niloticus (O. niloticus) were divided into four groups with three replicates fed the basal diet only, basal diet fortified with 200 mg/kg CUR, basal diet containing 1 % MEL, or a basal diet containing CUR + MEL. The results displayed that MEL significantly reduced growth performance indices and body crude lipid contents. Anemic, leukopenic, lymphocytopenic, heterocytopenic, esonipenic, hypoproteinemic and hypoalbuminic conditions were apparent. Moreover, depleted immune and antioxidant indicators including lysozyme activity, nitric oxide, immunoglobulin M, complement 3, glutathione peroxidase, and superoxide dismutase enzyme activity were recorded. Also, MEL reduced the disease resistance of O. niloticus to bacterial infection. Furthermore, MEL induced downregulation of mRNA levels of interleukin 1ß and tumor necrosis factor α in the spleen together with obvious pathological perturbations in both spleen and head kidneys. The CUR addition resulted in a significant enhancement in most indices. These results may conclude that MEL could alter both innate and adaptive immune responses via the negative transcriptional effect on immune-related genes together with the oxidative damage of the immune organs. Furthermore, CUR dietary supplements could be advantageous for mitigating MEL negative impacts, thus offering a favorable aquafeed additive for O. niloticus.


Subject(s)
Animal Feed/analysis , Cichlids , Curcumin/pharmacology , Cytokines/biosynthesis , Disease Resistance/drug effects , Food Contamination/analysis , Triazines/toxicity , Aeromonas hydrophila/growth & development , Animals , Antioxidants/metabolism , Cichlids/blood , Cichlids/growth & development , Cichlids/metabolism , Dietary Supplements , Disease Resistance/immunology , Fish Diseases/immunology , Fish Diseases/microbiology , Fish Diseases/prevention & control , Gram-Negative Bacterial Infections/immunology , Gram-Negative Bacterial Infections/microbiology , Gram-Negative Bacterial Infections/prevention & control , Head Kidney/drug effects , Head Kidney/metabolism , Oxidative Stress/drug effects
7.
Food Chem Toxicol ; 135: 111055, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31838190

ABSTRACT

This study explored the camel milk (CM) efficacy to ameliorate the fenpropathrin (FNP) induced neurotoxic impacts in rats. Six groups were orally administered physiological saline, corn oil, CM (2ml/rat/day), FNP (15 mg/kg bw daily for 60 days), CM/FNP (protective) or FNP + CM (therapeutic). Sensorimotor functions, memory, exploratory, and locomotor activities were assessed. The levels of dopamine (DOPA) neurotransmitter, acetylcholinesterase (AChE) enzyme, oxidative stress, and inflammatory markers were determined. Brain histopathology and apoptotic markers immunohistochemical detection were performed. The results revealed that FNP exposure resulted in deficit sensorimotor functions, impaired memory, and less exploration. DOPA and AChE Levels were significantly reduced. FNP exposure increased nitric oxide, malondialdehyde, myeloperoxidase, Caspase-3, and tumor necrosis factor-alpha levels but interleukin 10, total antioxidant capacity, and Bcl-2 levels were declined. Also, FNP exposure induced obvious encephalopathy. Additionally, neurodegenerative changes were seen in the hippocampi of FNP-treated rats. FNP Exposure induced a significant decrease of Bcl-2 immunolabelling but Caspase-3 immunoexpression was increased in cerebral cortices and hippocampus tissues. CM significantly counteracted the FNP injurious impacts, especially when used as a prophylactic routine than a therapeutic one. Conclusively, these findings confirmed that CM could be a biologically effective protective agent against FNP induced neurobehavioral aberrations and neurotoxic impacts.


Subject(s)
Apoptosis , Brain/drug effects , Milk , Oxidative Stress , Pyrethrins/toxicity , Animals , Behavior, Animal/drug effects , Brain/metabolism , Brain/pathology , Camelus , Dose-Response Relationship, Drug , Inflammation/chemically induced , Male , Memory/drug effects , Neurotoxicity Syndromes , Pyrethrins/administration & dosage , Rats , Rats, Sprague-Dawley
8.
Ecotoxicol Environ Saf ; 188: 109890, 2020 Jan 30.
Article in English | MEDLINE | ID: mdl-31704321

ABSTRACT

The present study evaluated the adverse effects of the hexavalent chromium (Cr (VI)) at sub-lethal concentrations and the ameliorative potential of curcumin (CUR) over a sub-chronic exposure period on Oreochromis niloticus. Fish were exposed to Cr (VI) (4.57 mg/L) and CUR (0.02% in diet or 200 mg/kg diet), individually or in combination for 60-days. The growth rate during the period of experiment, condition factor, body composition, hepatosomatic index (HSI), hematological parameters, oxidative stress, apoptotic and DNA damage, branchial, hepato- and nephrotoxicity were estimated in this study. Moreover, the changes in mRNA expression of Cytochromes (CYP450) and glutathione S-transferase (GST) in kidney and liver tissues were assessed by qRT-PCR. Additionally, the concentration of metallothionine in the liver, histological investigation, and lesion scoring to the branchial, hepatic, renal and gill tissues were applied. The results revealed that Cr (VI) exposure caused a significant decline in most hematological variables and growth rate with down-regulation of CYP450 and GST expression. Histologically, Cr (VI) induced diverse forms of cell injury, vascular, and inflammatory alterations with upregulation of caspase-3 and downregulation of Bcl2 expression in the examined tissues. Additionally, it elevated the levels of serum MDA and 8-hydroxy-2' -deoxyguanosine than control. CUR-supplementation resulted in a significant improvement in most indices, amelioration of histological alterations and up-regulation of CYP450 and GST expression. These results may conclude that dietary supplements with CUR could be useful for modulation of the growth with protective effects to the branchial, hepatic, and renal tissues in response to Cr (VI) exposure, thereby presenting a promising feed additive for Nile tilapia in aquaculture.


Subject(s)
Chromium/toxicity , Cichlids/metabolism , Curcumin/pharmacology , Cytochrome P-450 Enzyme System/genetics , Glutathione Transferase/genetics , Kidney/drug effects , Liver/drug effects , Water Pollutants, Chemical/toxicity , Animals , Aquaculture , Cichlids/genetics , Cytochrome P-450 Enzyme System/metabolism , Diet , Dietary Supplements , Gene Expression/drug effects , Gills/drug effects , Gills/enzymology , Glutathione Transferase/metabolism , Kidney/enzymology , Liver/enzymology , Oxidative Stress/drug effects
9.
Life Sci ; 212: 159-167, 2018 Nov 01.
Article in English | MEDLINE | ID: mdl-30290186

ABSTRACT

AIMS: We investigate the consequence of adjuvant anastrozole (ANA) in monotherapy or associated with biochanin A (BCA) in ovariectomized (OVX) rat model and the degree of developing bone loss in both conditions. MATERIALS AND METHODS: Sixty female rats were assigned to six groups. Five groups were bilaterally OVX, and one was sham operated. The five groups were; ANA group (0.5 mg/kg b.wt orally), BCA (5 mg/kg b.wt intraperitoneally (I/P), co-treated group (BCA + ANA), two control groups receiving even distilled water orally or DMSO I/P for twenty weeks. Bone turnover biomarkers BALP, OC, PTH, TRAP and TNFα were determined in serum. Bone mineral content, histological and morphometric measurements on rat femurs were performed. BMD by X-ray technique on tibias of rats and CT analysis of lumbar vertebrae of all treated and sham groups were applied. KEY FINDINGS: There was marked elevation in bone turnover biomarkers with high serum Ca and P content in the ANA-treated rats. Moreover marked elevation of TNFα, PTH, TC and TG, ANA caused severe changes in the BMD detected by X-ray in tibial bones and CT analysis of lumbar vertebrae of OVX rats. While I/P injection of BCA ameliorated the adverse bone health decrements caused by ANA. SIGNIFICANCE: The study highlights the importance of the BCA supplementation in accordance with the ANA therapy in case of ovariectomized rat model of osteoporosis which is clinically presented in Postmenopausal women with breast cancer during which considerable risk of developing osteoporosis is predicted during treatment.


Subject(s)
Adjuvants, Pharmaceutic/toxicity , Anastrozole/toxicity , Genistein/pharmacology , Osteoporosis/drug therapy , Ovariectomy/adverse effects , Phytoestrogens/pharmacology , Animals , Female , Osteoporosis/etiology , Rats , Rats, Sprague-Dawley
10.
Acta Histochem ; 120(8): 828-836, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30268437

ABSTRACT

The aim of the present study was to assess the therapeutic potential of melatonin (Mel) in diabetic central neuropathy in a rat model of streptozotocin (STZ)-induced diabetes. The rats were injected with 60 mg/kg STZ and diabetes was confirmed by blood glucose levels (BGL) ≥ 250 mg/dL. Mel treatment (50 mg/kg) was started 72 h before the STZ injection and continued for 45 days. In addition, normal control, vehicle (5% ethanol) control, and Mel-treated non-diabetic control were also included. STZ induced a diabetic phenotype with persistent hyperglycemia and elevated oxidative stress in the brain, liver, and kidneys compared to the control groups. In addition, the diabetic rats showed severe ß-cell necrosis with reduced insulin levels, cerebral neuronopathy, myelinopathy, axonopathy, microglial and astroglial activation, and vascular damage. While Mel treatment did not prevent the development of STZ-induced diabetes mellitus and had no significant effect on the BGLs of the diabetic rats, it significantly ameliorated the diabetes-induced oxidative stress and neurodegeneration. Taken together, Mel showed potent therapeutic effects against the neurological complications of hyperglycemia and therefore can be used to treat diabetic neuropathy.


Subject(s)
Diabetes Mellitus, Experimental , Melatonin/pharmacology , Streptozocin , Animals , Blood Glucose/drug effects , Body Weight , Brain/pathology , Diabetes Mellitus, Experimental/chemically induced , Diabetes Mellitus, Experimental/therapy , Immunohistochemistry , Infusions, Parenteral , Male , Melatonin/administration & dosage , Microscopy, Electron, Transmission , Pancreas/pathology , Rats , Streptozocin/toxicity
11.
Biomed Pharmacother ; 102: 739-748, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29604593

ABSTRACT

Ebselen (EBS) is a versatile compound that can protect the cellular components from oxidative and free radical-mediated damage. In the present study, we investigated the protective effect of EBS against manganese (Mn) toxicity on male reproductive organs. Thirty-two male rats were assigned into four groups, namely, negative control, EBS (15 mg/kg body weight (bw), as a single protective IP injection), MnCl2 (50 mg/kg bw, orally for 30 consecutive days), and EBS + MnCl2 (as mentioned before). The results showed that EBS ameliorated the alterations caused by MnCl2 in the testicular, epididymal, and seminal vesicle tissues. MnCl2 increased the sperm abnormalities, decreased gonadosomatic index (GSI), sperm motility, and sperm count. Further, it reduced the serum levels of testosterone (T) and luteinizing hormone (LH). The elevated levels of malondialdehyde (MDA), nitric oxide (NO), and 8-OH-2'-deoxyguanosine (8-OHdG) and decreased the levels of superoxide dismutase (SOD), glutathione (GSH), and catalase (CAT) upon exposure to MnCl2 indicated a disturbance in the activities of the testicular antioxidant enzymes and indices. Histologically, MnCl2 decreased the diameter of seminiferous tubules (ST), the height of germinal epithelium, number of spermatogonia/ST, spermatocytes/ST, spermatids/ST, and Leydig cells/intertubular area (IA). Chemoprotection with EBS successfully mitigated most of the above-mentioned parameters concluding that EBS could be used as a useful prophylactic therapy whenever Mn toxicity is involved.


Subject(s)
Azoles/chemistry , Azoles/pharmacology , Fertility/drug effects , Genitalia, Male/pathology , Manganese/toxicity , Organoselenium Compounds/chemistry , Organoselenium Compounds/pharmacology , Protective Agents/pharmacology , Toxicity Tests , Animals , Antioxidants/metabolism , Body Weight/drug effects , Epididymis/drug effects , Genitalia, Male/drug effects , Genitalia, Male/ultrastructure , Hormones/blood , Isoindoles , Male , Models, Animal , Organ Size/drug effects , Rats, Sprague-Dawley , Seminal Vesicles/drug effects , Seminal Vesicles/pathology , Sperm Count , Sperm Motility , Spermatozoa/drug effects , Spermatozoa/pathology , Testis/drug effects , Testis/pathology , Testis/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL
...