Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
IEEE Rev Biomed Eng ; PP2022 Oct 10.
Article in English | MEDLINE | ID: mdl-36215349

ABSTRACT

Non-contact vital sign monitoring has been an important research topic recently due to the ability to monitor patients for an extended period especially during sleep without requiring uncomfortable attachments. Radar is a popular sensor for vital sign monitoring research. Various algorithms have been proposed for estimating respiration rate and heart rate from the radar data. But many algorithms rely on Fast Fourier Transform (FFT) to convert time domain signal to the frequency domain and estimate vital signs, despite FFT having limitation of frequency resolution being inverse of the time interval of data sample. However, there are other spectral estimation algorithms, which have not been much researched into the suitability of vital sign estimation using radar signals. In this paper, we compared eight different types of spectral estimation algorithms, including FFT, for respiration rate and heart rate estimation of stationary subjects in a controlled environment. The evaluation is based on extensive data consisting of different stationary subject positions. Considering the results, the eligibility of algorithms other than FFT for respiration rate and heart rate estimation is demonstrated. Using this work, researchers can get an overview on which algorithm is suitable for their work without the need to review individual algorithms separately.

2.
Sensors (Basel) ; 22(1)2021 Dec 23.
Article in English | MEDLINE | ID: mdl-35009628

ABSTRACT

Vital signs such as heart rate and respiration rate are among the most important physiological signals for health monitoring and medical applications. Impulse radio (IR) ultra-wideband (UWB) radar becomes one of the essential sensors in non-contact vital signs detection. The heart pulse wave is easily corrupted by noise and respiration activity since the heartbeat signal has less power compared with the breathing signal and its harmonics. In this paper, a signal processing technique for a UWB radar system was developed to detect the heart rate and respiration rate. There are four main stages of signal processing: (1) clutter removal to reduce the static random noise from the environment; (2) independent component analysis (ICA) to do dimension reduction and remove noise; (3) using low-pass and high-pass filters to eliminate the out of band noise; (4) modified covariance method for spectrum estimation. Furthermore, higher harmonics of heart rate were used to estimate heart rate and minimize respiration interference. The experiments in this article contain different scenarios including bed angle, body position, as well as interference from the visitor near the bed and away from the bed. The results were compared with the ECG sensor and respiration belt. The average mean absolute error (MAE) of heart rate results is 1.32 for the proposed algorithm.


Subject(s)
Radar , Respiratory Rate , Algorithms , Heart Rate , Monitoring, Physiologic , Respiration , Signal Processing, Computer-Assisted , Vital Signs
3.
Annu Int Conf IEEE Eng Med Biol Soc ; 2020: 4398-4401, 2020 07.
Article in English | MEDLINE | ID: mdl-33018970

ABSTRACT

Pulse wave and respiration are two important vital signals in diagnosing and treating diseases. In this paper, we investigated a Bio-impedance (BImp) based respiration and pulse wave monitoring system. The BImp signal is successfully extracted from a wearable device placed on the shoulder. Using the rate calculation algorithm, heart rate (HR), and respiration rate (RR) values are extracted accurately. The data is collected during different steps of breathing including slow, fast, deep, hold, and normal from 10 volunteers. The accuracy of HR results is compared to that of extracted from PPG with considering ECG based HR as reference. The extracted RR values are investigated against TCo2 sensor's output. The estimation of both RR and HR extracted from the BImp signal has higher accuracy compared to the other methods.


Subject(s)
Photoplethysmography , Signal Processing, Computer-Assisted , Electric Impedance , Heart Rate , Humans , Respiratory Rate
SELECTION OF CITATIONS
SEARCH DETAIL
...