Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Pharm ; 20(1): 101-117, 2023 01 02.
Article in English | MEDLINE | ID: mdl-36475680

ABSTRACT

This work investigates the synergistic effect of magnetotherapy and a novel cationic-magnetic drug delivery system on inhibiting breast cancer cell growth and other tissues. First, super-paramagnetic magnetite (Fe3O4) nanoparticles were coated with doxorubicin-imprinted poly(methacrylic acid-co-diallyl dimethylammonium chloride) [Fe3O4/poly(MAA-DDA)]. The cationic-magnetic nanocomposite (CMC) was characterized using XRD, FT-IR, VSM, TGA, TEM, FESEM, EDS, DLS, and BET. In vitro analyses, including drug release kinetics, cytotoxicity, and hemolytic assays, confirmed this novel CMC's good drug release profile and biocompatibility. Finally, in vivo experiments on BALB/c mice were designed to evaluate the synergistic effect of magnetotherapy on targeted drug delivery using the CMC. In vivo fluorescence imaging evaluated the drug distribution in different tissues of mice. Tumor volume evaluation demonstrated the efficiency of the CMC and magnetotherapy in preventing tumor growth; the two techniques significantly reduced tumor volume. Histopathological analysis proved that applying magnetotherapy in conjunction with the cationic-magnetic drug delivery system significantly prevented tumor cell proliferation and increased apoptosis with limited impact on other tissues. Also, Dox and Fe concentrations in different tissues confirmed the efficient drug delivery to tumor cells.


Subject(s)
Adenocarcinoma , Magnetite Nanoparticles , Nanocomposites , Animals , Mice , Spectroscopy, Fourier Transform Infrared , Drug Carriers , Doxorubicin/pharmacology , Doxorubicin/therapeutic use , Drug Delivery Systems/methods , Drug Liberation , Magnetic Phenomena
SELECTION OF CITATIONS
SEARCH DETAIL
...