Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 22(24)2022 Dec 14.
Article in English | MEDLINE | ID: mdl-36560217

ABSTRACT

An accurate seismic response simulation of civil structures requires accounting for the nonlinear soil response behavior. This, in turn, requires understanding the nonlinear material behavior of in situ soils under earthquake excitations. System identification methods applied to data recorded during earthquakes provide an opportunity to identify the nonlinear material properties of in situ soils. In this study, we use a Bayesian inference framework for nonlinear model updating to estimate the nonlinear soil properties from recorded downhole array data. For this purpose, a one-dimensional finite element model of the geotechnical site with nonlinear soil material constitutive model is updated to estimate the parameters of the soil model as well as the input excitations, including incident, bedrock, or within motions. The seismic inversion method is first verified by using several synthetic case studies. It is then validated by using measurements from a centrifuge test and with data recorded at the Lotung experimental site in Taiwan. The site inversion method is then applied to the Benicia-Martinez geotechnical array in California, using the seismic data recorded during the 2014 South Napa earthquake. The results show the promising application of the proposed seismic inversion approach using Bayesian model updating to identify the nonlinear material parameters of in situ soil by using recorded downhole array data.

2.
Polymers (Basel) ; 14(9)2022 May 04.
Article in English | MEDLINE | ID: mdl-35567047

ABSTRACT

Understanding material behavior is key to discovering innovative applications in any field. Regardless of the exciting mechanical properties of polyurea, there has been a limited effort in studying the use of polyurea for structural retrofit and strengthening applications. This study aims to understand the behavior of polyurea under different tensile loading conditions to provide critical information towards enabling the future use of polyurea in structural applications. Several standard coupons are tested under various tensile loading conditions to understand the mechanical behavior of eight different commercial polyureas. The study provides the full stress-strain characteristic curves that can be used for constitutive modeling purposes. The results show that polyurea has a wide range of properties from low strength flexible nature to high strength rigid nature. All tested polyureas displayed some level of rate dependency, i.e., ultimate strength is a function of loading rates. The high-strength polyureas tested only show slight rate dependency and good strength retention under cyclic and fatigue tensile loading, suggesting that polyureas have promising mechanical properties for potential structural applications.

3.
Sensors (Basel) ; 22(3)2022 Feb 08.
Article in English | MEDLINE | ID: mdl-35162022

ABSTRACT

Rapid post-earthquake damage diagnosis of bridges can guide decision-making for emergency response management and recovery. This can be facilitated using digital technologies to remove the barriers of manual post-event inspections. Prior mechanics-based Finite Element (FE) models can be used for post-event response simulation using the measured ground motions at nearby stations; however, the damage assessment outcomes would suffer from uncertainties in structural and soil material properties, input excitations, etc. For instrumented bridges, these uncertainties can be reduced by integrating sensory data with prior models through a model updating approach. This study presents a sequential Bayesian model updating technique, through which a linear/nonlinear FE model, including soil-structure interaction effects, and the foundation input motions are jointly identified from measured acceleration responses. The efficacy of the presented model updating technique is first examined through a numerical verification study. Then, seismic data recorded from the San Rogue Canyon Bridge in California are used for a real-world case study. Comparison between the free-field and the foundation input motions reveals valuable information regarding the soil-structure interaction effects at the bridge site. Moreover, the reasonable agreement between the recorded and estimated bridge responses shows the potentials of the presented model updating technique for real-world applications. The described process is a practice of digital twinning and the updated FE model is considered as the digital twin of the bridge and can be used to analyze the bridge and monitor the structural response at element, section, and fiber levels to diagnose the location and severity of any potential damage mechanism.

SELECTION OF CITATIONS
SEARCH DETAIL
...