Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Vet Sci ; 8(6)2021 Jun 10.
Article in English | MEDLINE | ID: mdl-34200566

ABSTRACT

Alternatives to the antibiotic fumagillin for the control of Nosema ceranae, a gut parasite of the honey bee, are needed. The prebiotics eugenol, chitosan, and naringenin and the probiotic Protexin® (Enterococcus faecium) provided in sugar syrup or protein patty either in spring or fall were evaluated for their effects on N. ceranae infection, colony population, honey yield and winter survivorship using field colonies. In the first year, spring treatments with eugenol, naringenin, and Protexin® significantly reduced N. ceranae infection and increased honey production, while Protexin® also increased adult bee populations and chitosan was ineffective. Fall treatments increased survivorship and decreased N. ceranae infection the following spring. In the second year, selected compounds were further tested with a larger number of colonies per treatment and only protein patty used in the spring and sugar syrup in the fall. Protexin® and naringenin significantly decreased N. ceranae infections and increased the population of adult bees after spring treatment, but did not affect honey yields. There were no differences between treatments for colony winter mortality, but surviving colonies that had been treated with Protexin® and naringenin were significantly more populated and had lower N. ceranae spore counts than control, non-treated colonies. Protexin® and naringenin were the most promising candidates for controlling N. ceranae and promoting honey bee populations, warranting further investigation. Future research should investigate the optimal colony dose and treatment frequency to maximize colony health.

2.
Insects ; 11(12)2020 Dec 04.
Article in English | MEDLINE | ID: mdl-33291568

ABSTRACT

After two years of bidirectional selection for low and high rates of Varroa destructor population growth (LVG and HVG, respectively) in honey bee (Apis mellifera) colonies in Ontario, Canada, significant differences between the two genotypes were observed. LVG colonies had V. destructor population increases over the summer of 1.7 fold compared to 9.6 fold for HVG colonies by Generation 2. Additionally, HVG colonies had significantly higher mite infestation rates in adult bees compared to LVG colonies for both selected generations. DWV prevalence and levels were significantly higher in HVG colonies than in LVG colonies in Generation 1 but not in Generation 2. Winter mortality rates of Generation 1 colonies were significantly different at 26% and 14% for the HVG and LVG genotypes, respectively. The results of this study thus far indicate that selection for LVG may result in colonies with lower V. destructor infestation rates, lower prevalence, and levels of DWV and higher colony winter survivorship. Future work will focus on determining what mechanisms are responsible for the genotypic differences, estimating genetic parameters, and molecular analyses of the genotypes to identify candidate genes associated with resistance to V. destructor and DWV that could potentially be used for marker-assisted selection.

3.
Vet Sci ; 7(3)2020 Sep 08.
Article in English | MEDLINE | ID: mdl-32911814

ABSTRACT

Nosema ceranae is an emerging pathogen of the western honey bee (Apis mellifera L.), and thus its seasonality and impact on bee colonies is not sufficiently documented for North America. This study was conducted to determine the infection intensity, prevalence, and viability of N. ceranae in >200 honey bee colonies during spring, summer, and fall, in a North American region. We also determined the relationship of N. ceranae infections with colony populations, food stores, bee survivorship, and overwinter colony mortality. The highest rates of N. ceranae infection, prevalence, and spore viability were found in the spring and summer, while the lowest were recorded in the fall. N. ceranae spore viability was significantly correlated with its prevalence and infection intensity in bees. Threshold to high levels of N. ceranae infections (>1,000,000 spores/bee) were significantly associated with reduced bee populations and food stores in colonies. Furthermore, worker bee survivorship was significantly reduced by N. ceranae infections, although no association between N. ceranae and winter colony mortality was found. It is concluded that N. ceranae infections are highest in spring and summer and may be detrimental to honey bee populations and colony productivity. Our results support the notion that treatment is justified when infections of N. ceranae exceed 1,000,000 spores/bee.

4.
Parasitol Res ; 115(1): 175-81, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26358102

ABSTRACT

This study was conducted to determine the prevalence and infection levels of the microsporidia fungi Nosema apis and/or Nosema ceranae in honey bee colonies of two Canadian provinces. Three surveys were conducted in the springs of 2008, 2010 and 2012 and PCR identification of Nosema species were performed in samples from 169 and 181 Ontario colonies and from 76 Alberta colonies that tested positive to Nosema spp. Infection levels of positive colonies were determined by microscopy and analyzed by Nosema spp. Results showed that N. ceranae was the dominant species in all three surveys (prevalence range of 41-91 vs. 4-34 % for N. apis), whereas mixed infections were less frequent than single infections (5-25 %). Infection levels of colonies parasitized by N. ceranae were three to five times higher than those of colonies parasitized by N. apis in the three surveys whereas mixed infections showed the highest spore counts. This is the first field study demonstrating significantly higher infection levels in colonies parasitized with either N. ceranae only or with both, N. ceranae and N. apis, than in colonies parasitized with N. apis only. Taken together, these results suggest that N. ceranae may be more virulent and better adapted than N. apis in cold climates such as Canadian environments.


Subject(s)
Bees/microbiology , Nosema/isolation & purification , Alberta , Animals , Colony Count, Microbial , DNA, Fungal/chemistry , DNA, Fungal/isolation & purification , Microscopy, Phase-Contrast , Nosema/classification , Nosema/genetics , Ontario , Polymerase Chain Reaction , Prevalence
SELECTION OF CITATIONS
SEARCH DETAIL
...