Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Biomol Screen ; 21(2): 127-35, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26442913

ABSTRACT

Leukotrienes (LTs) and related species are proinflammatory lipid mediators derived from arachidonic acid (AA) that have pathological roles in autoimmune and inflammatory conditions, cardiovascular diseases, and cancer. 5-Lipoxygenase activating protein (FLAP) plays a critical accessory role in the conversion of AA to LTA4, and its subsequent conversion to LTC4 by LTC4 synthase. Pharmacological inhibition of FLAP results in a loss of LT production by preventing the biosynthesis of both LTB4 and LTC4, making it an attractive target for the treatment of inflammatory diseases in which LTs likely play a role. Small-molecule (SM) drugs often exhibit polypharmacology through various pathways, which may explain the differential therapeutic efficacies of compounds sharing structural similarity. We have profiled a series of SM FLAP modulators for their selectivity across enzymes of AA cascade in human whole blood (HWB), using a recently developed LC/MS (liquid chromatography-mass spectrometry)-based high-throughput lipidomics platform that monitors 122 eicosanoids in multiplex. Highly efficient data acquisition coupled with fast and accurate data analysis allowed facile compound profiling from ex vivo study samples. This platform allowed us to quantitatively map the effects of those SMs on the entire AA cascade, demonstrating its potential to discriminate structurally related compounds.


Subject(s)
5-Lipoxygenase-Activating Proteins/chemistry , Small Molecule Libraries/chemistry , Eicosanoids/chemistry , Glutathione Transferase/chemistry , Humans , Leukotrienes/chemistry , Polypharmacology
2.
Bioorg Med Chem Lett ; 23(3): 811-5, 2013 Feb 01.
Article in English | MEDLINE | ID: mdl-23260350

ABSTRACT

Leukotrienes (LT's) are known to play a physiological role in inflammatory immune response. Leukotriene A(4) hydrolase (LTA(4)H) is a cystolic enzyme that stereospecifically catalyzes the transformation of LTA(4) to LTB(4). LTB(4) is a known pro-inflammatory mediator. This paper describes the identification and synthesis of substituted benzofurans as LTH(4)H inhibitors. The benzofuran series demonstrated reduced mouse and human whole blood LTB(4) levels in vitro and led to the identification one analog for advanced profiling. Benzofuran 28 showed dose responsive target engagement and provides a useful tool to explore a LTA(4)H inhibitor for the treatment of inflammatory diseases, such as asthma and inflammatory bowel disease (IBD).


Subject(s)
Benzofurans/chemistry , Enzyme Inhibitors/chemistry , Epoxide Hydrolases/antagonists & inhibitors , Animals , Benzofurans/pharmacology , Dose-Response Relationship, Drug , Enzyme Activation/drug effects , Enzyme Inhibitors/pharmacology , Humans , Inhibitory Concentration 50 , Mice , Molecular Structure , Rats , Rats, Sprague-Dawley
4.
Bioorg Med Chem Lett ; 18(16): 4491-4, 2008 Aug 15.
Article in English | MEDLINE | ID: mdl-18672364

ABSTRACT

The synthesis and SAR of a series of chiral heterocyclic ring-constrained norepinephrine reuptake inhibitors are described. The best compounds compare favorably with atomoxetine in potency (IC(50)s<10 nM), selectivity against the other monoamine transporters, and inhibition of CYP2D6 (IC(50)s>1 microM). In addition, the compounds are generally more stable than atomoxetine to oxidative metabolism and thus are likely to have lower clearance in humans.


Subject(s)
Adrenergic Uptake Inhibitors/chemical synthesis , Adrenergic Uptake Inhibitors/pharmacology , Chemistry, Pharmaceutical/methods , Norepinephrine Plasma Membrane Transport Proteins/chemical synthesis , Norepinephrine Plasma Membrane Transport Proteins/pharmacology , Norepinephrine/chemistry , Oxygen/chemistry , Adrenergic Uptake Inhibitors/chemistry , Atomoxetine Hydrochloride , Cytochrome P-450 CYP2D6/chemistry , Drug Design , Humans , Inhibitory Concentration 50 , Models, Chemical , Molecular Conformation , Norepinephrine/metabolism , Propylamines/chemistry , Propylamines/pharmacology , Structure-Activity Relationship , Symporters/chemistry
5.
J Org Chem ; 73(15): 5732-44, 2008 Aug 01.
Article in English | MEDLINE | ID: mdl-18578498

ABSTRACT

Reactions of dibromocyclopropane 2a, containing two spiro-fused 1,3-dioxane rings, with MeLi gave only the methylation products 8 and 9 even at elevated temperatures. In contrast, the cyclohexane analogue 2b treated with MeLi underwent a smooth rearrangement to bicyclo[1.1.0]butane 11b at -78, -10, or +35 degrees C. Treatment of 2a with PhLi gave the alpha-Ph anion 13 as the only product, which underwent smooth methylation with MeI to give 14. Under the same conditions, 2b with PhLi gave bicyclo[1.1.0]butane 11b accompanied by bromophenyl derivative 8b. Treatment of either dibromide with t-BuLi gave a mixture of products including debrominated cyclopropanes 12. Experimental results were augmented with DFT calculations for salts 23 and MP2//DFT-level calculations for carbenes 22. They demonstrated a higher stability of the dioxane alpha-bromo anion with respect to alpha-elimination by 4.8 kcal/mol and also a lower tendency of the carbene 22a to undergo rearrangement by 4.0 kcal/mol than the cyclohexane analogues. These differences have been attributed to the inductive effect of the four oxygen atoms, which results in lower LUMO energy, the higher positive charge at the carbenic center, and the overall more electrophilic character of carbene 22a as compared to the cyclohexane derivative 22b. The rearrangement of carbenes 22 to the corresponding allenes 1, the thermodynamic products, requires a higher activation energy DeltaG(double dagger)(298) by 4.2 kcal/mol for dioxane and 6.4 kcal/mol for cyclohexane derivatives than for the formation of the bicyclo[1.1.0]butanes 11. The DeltaG(double dagger)(298) for intramolecular insertions to the CH bond is low and calculated as 6.0 kcal/mol for dioxane 22a and 2.0 kcal/mol for the formation of cyclohexane 22b.

6.
J Pharmacol Exp Ther ; 308(3): 1046-52, 2004 Mar.
Article in English | MEDLINE | ID: mdl-14718610

ABSTRACT

We studied the effect of salt intake and hypertension on the systemic kallikrein-kinin system (KKS), as measured by bradykinin (BK) 1-5, a stable circulating bradykinin metabolite, and the tissue KKS, as measured by urinary kallikrein excretion. Venous BK 1-5, urinary kallikrein, and components of the renin-angiotensin-aldosterone system were measured in 35 normotensive and 19 hypertensive subjects who were maintained on a high (200 mmol/day) or low (10 mmol/day) salt diet. Salt restriction decreased mean arterial pressure (MAP) (P < 0.001 overall) and the plasma angiotensin-converting enzyme (P = 0.017) and increased plasma renin activity (P < 0.001) and serum aldosterone (P < 0.001). There was an interactive effect of salt intake and hypertension on plasma BK 1-5 (P = 0.043), with BK 1-5 significantly lower during low compared with high salt intake in normotensive (24.7 +/- 2.6 versus 34.9 +/- 5.6 fmol/ml, P = 0.002) but not hypertensive subjects (30.6 +/- 4.6 versus 27.5 +/- 2.8 fmol/ml, P = 0.335). In normotensives, the change in plasma BK 1-5 from high to low salt intake correlated with the change in MAP (r = 0.533, P = 0.004). Urinary kallikrein was higher during low compared with high salt intake (P < 0.001) in both groups. There was no effect of salt intake on urinary BK 1-5. In summary, the systemic and renal KKSs act in tandem to modulate the response to salt intake. The systemic system is activated during high salt intake and counterbalances increased vascular response to pressors. With sodium restriction, the renal system is activated and counterbalances the increased sodium-retaining state induced by activation of the renin-angiotensin-aldosterone system. With hypertension, these modulating effects are diminished or lost, supporting a role for both systems in the development/maintenance of hypertension.


Subject(s)
Hypertension/blood , Kallikreins/blood , Kinins/blood , Sodium, Dietary/pharmacology , Adult , Blood Pressure/drug effects , Endocrine Glands/drug effects , Female , Heart Rate/drug effects , Humans , Hypertension/physiopathology , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...