Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Biotechnol Bioeng ; 101(5): 1072-82, 2008 Dec 01.
Article in English | MEDLINE | ID: mdl-18553495

ABSTRACT

Modeling the influence of a technology such as nanoparticle systems on drug delivery is beneficial in rational formulation design. While there are many studies showing drug delivery enhancement by nanoparticles, the literature provides little guidance regarding when nanoparticles are useful for delivery of a given drug. A model was developed predicting intracellular drug concentration in cultured cells dosed with nanoparticles. The model considered drug release from nanoparticles as well as drug and nanoparticle uptake by the cells as the key system processes. Mathematical expressions for these key processes were determined using experiments in which each process occurred in isolation. In these experiments, intracellular delivery of saquinavir, a low solubility drug dosed as a formulation of poly(ethylene oxide)-modified poly(epsilon- caprolactone) (PEO-PCL) nanoparticles, was studied in THP-1 human monocyte/macrophage (Mo/Mac) cells. The model accurately predicted the enhancement in intracellular concentration when drug was administered in nanoparticles compared to aqueous solution. This simple model highlights the importance of relative kinetics of nanoparticle uptake and drug release in determining overall enhancement of intracellular drug concentration when dosing with nanoparticles.


Subject(s)
Drug Carriers/metabolism , Models, Biological , Nanoparticles , Saquinavir/administration & dosage , Biological Transport , Cell Line, Tumor , Chemistry, Pharmaceutical/methods , HIV Protease Inhibitors/administration & dosage , HIV Protease Inhibitors/analysis , Humans , Kinetics , Monocytes/chemistry , Monocytes/metabolism , Particle Size , Polyesters , Saquinavir/analysis , Solubility
SELECTION OF CITATIONS
SEARCH DETAIL
...