Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Syst Rev ; 13(1): 147, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824585

ABSTRACT

INTRODUCTION: Personalised prevention aims to delay or avoid disease occurrence, progression, and recurrence of disease through the adoption of targeted interventions that consider the individual biological, including genetic data, environmental and behavioural characteristics, as well as the socio-cultural context. This protocol summarises the main features of a rapid scoping review to show the research landscape on biomarkers or a combination of biomarkers that may help to better identify subgroups of individuals with different risks of developing specific diseases in which specific preventive strategies could have an impact on clinical outcomes. This review is part of the "Personalised Prevention Roadmap for the future HEalThcare" (PROPHET) project, which seeks to highlight the gaps in current personalised preventive approaches, in order to develop a Strategic Research and Innovation Agenda for the European Union. OBJECTIVE: To systematically map and review the evidence of biomarkers that are available or under development in cancer, cardiovascular and neurodegenerative diseases that are or can be used for personalised prevention in the general population, in clinical or public health settings. METHODS: Three rapid scoping reviews are being conducted in parallel (February-June 2023), based on a common framework with some adjustments to suit each specific condition (cancer, cardiovascular or neurodegenerative diseases). Medline and Embase will be searched to identify publications between 2020 and 2023. To shorten the time frames, 10% of the papers will undergo screening by two reviewers and only English-language papers will be considered. The following information will be extracted by two reviewers from all the publications selected for inclusion: source type, citation details, country, inclusion/exclusion criteria (population, concept, context, type of evidence source), study methods, and key findings relevant to the review question/s. The selection criteria and the extraction sheet will be pre-tested. Relevant biomarkers for risk prediction and stratification will be recorded. Results will be presented graphically using an evidence map. INCLUSION CRITERIA: Population: general adult populations or adults from specific pre-defined high-risk subgroups; concept: all studies focusing on molecular, cellular, physiological, or imaging biomarkers used for individualised primary or secondary prevention of the diseases of interest; context: clinical or public health settings. SYSTEMATIC REVIEW REGISTRATION: https://doi.org/10.17605/OSF.IO/7JRWD (OSF registration DOI).


Subject(s)
Biomarkers , Precision Medicine , Humans , Precision Medicine/methods , Chronic Disease/prevention & control , Neoplasms/prevention & control , Cardiovascular Diseases/prevention & control , Neurodegenerative Diseases/prevention & control , Systematic Reviews as Topic
2.
Trials ; 18(1): 346, 2017 07 21.
Article in English | MEDLINE | ID: mdl-28732521

ABSTRACT

BACKGROUND: The coracoid approach is recognized as the simplest approach to perform brachial plexus anaesthesia, but needle visualization needs to be improved. With a different needle entry point, the retroclavicular approach confers a perpendicular angle between the ultrasound and the needle, which theoretically enhances needle visualization. This trial compares these two techniques. The leading hypothesis is that the retroclavicular approach is comparable to the infraclavicular coracoid approach in general aspects, but needle visualization is better with this novel approach. METHODS: We designed a multicentre, randomized, non-inferiority trial. Patients eligible for the study are older than 18 years, able to consent, will undergo urgent or elective upper limb surgery distal to the elbow and are classified with American Society of Anaesthesiologists risk score (ASA) I-III. They will be excluded if they meet contraindicated criteria to regional anaesthesia, have affected anatomy of the clavicle or are pregnant. Randomization will be done by a computer-generated randomization schedule stratified for each site and in 1:1 ratio, and concealment will be maintained with opaque, sealed envelopes in a locked office. The primary outcome, the performance time, will be analyzed using non-inferiority analysis while secondary outcomes will be analyzed with superiority analysis. Needle visualization will be ranked on a Likert scale of 1-5 that is subjective and represents a pitfall. Two separate persons will rank needle visualization to compensate this pitfall. According to previous studies, 49 patients per group are required for statistical power of 0.90 and one-sided type I error of 0.05. DISCUSSION: The conduct of this study will bring clear answers to our questions and, if our hypothesis is confirmed, will confer an anatomic alternative to difficult coracoid infraclavicular brachial blocks or could even become a standard for brachial plexus anaesthesia. TRIAL REGISTRATION: ClinicalTrials.gov, NCT02913625 . Registered on 12 September 2016.


Subject(s)
Anesthetics, Local/administration & dosage , Brachial Plexus Block/methods , Brachial Plexus , Upper Extremity/innervation , Anesthetics, Local/adverse effects , Brachial Plexus Block/adverse effects , Clinical Protocols , Female , Humans , Injections , Male , Needles , Quebec , Research Design , Time Factors , Treatment Outcome , Ultrasonography, Interventional , Upper Extremity/surgery
3.
J Biol Chem ; 275(43): 33869-75, 2000 Oct 27.
Article in English | MEDLINE | ID: mdl-10922373

ABSTRACT

The multifunctional AdhE protein of Escherichia coli (encoded by the adhE gene) physiologically catalyzes the sequential reduction of acetyl-CoA to acetaldehyde and then to ethanol under fermentative conditions. The NH(2)-terminal region of the AdhE protein is highly homologous to aldehyde:NAD(+) oxidoreductases, whereas the COOH-terminal region is homologous to a family of Fe(2+)-dependent ethanol:NAD(+) oxidoreductases. This fusion protein also functions as a pyruvate formate lyase deactivase. E. coli cannot grow aerobically on ethanol as the sole carbon and energy source because of inadequate rate of adhE transcription and the vulnerability of the AdhE protein to metal-catalyzed oxidation. In this study, we characterized 16 independent two-step mutants with acquired and improved aerobic growth ability on ethanol. The AdhE proteins in these mutants catalyzed the sequential oxidation of ethanol to acetaldehyde and to acetyl-CoA. All first stage mutants grew on ethanol with a doubling time of about 240 min. Sequence analysis of a randomly chosen mutant revealed an Ala-267 --> Thr substitution in the acetaldehyde:NAD(+) oxidoreductase domain of AdhE. All second stage mutants grew on ethanol with a doubling time of about 90 min, and all of them produced an AdhE(A267T/E568K). Purified AdhE(A267T) and AdhE(A267T/E568K) showed highly elevated acetaldehyde dehydrogenase activities. It therefore appears that when AdhE catalyzes the two sequential reactions in the counter-physiological direction, acetaldehyde dehydrogenation is the rate-limiting step. Both mutant proteins were more thermosensitive than the wild-type protein, but AdhE(A267T/E568K) was more thermal stable than AdhE(A267T). Since both mutant enzymes exhibited similar kinetic properties, the second mutation probably conferred an increased growth rate on ethanol by stabilizing AdhE(A267T).


Subject(s)
Alcohol Dehydrogenase/physiology , Aldehyde Oxidoreductases/physiology , Escherichia coli/enzymology , Multienzyme Complexes/physiology , Alcohol Dehydrogenase/genetics , Aldehyde Oxidoreductases/genetics , Alleles , Amino Acid Sequence , Enzyme Stability , Escherichia coli Proteins , Ethanol/metabolism , Molecular Sequence Data , Multienzyme Complexes/genetics , Mutagenesis, Site-Directed , Structure-Activity Relationship
4.
J Biol Chem ; 275(35): 27393-8, 2000 Sep 01.
Article in English | MEDLINE | ID: mdl-10852912

ABSTRACT

We have analyzed the proteins that are oxidatively damaged when Saccharomyces cerevisiae cells are exposed to stressing conditions. Carbonyl groups generated by hydrogen peroxide or menadione on proteins of aerobically respiring cells were detected by Western blotting, purified, and identified. Mitochondrial proteins such as E2 subunits of both pyruvate dehydrogenase and alpha-ketoglutarate dehydrogenase, aconitase, heat-shock protein 60, and the cytosolic fatty acid synthase (alpha subunit) and glyceraldehyde-3-phosphate dehydrogenase were the major targets. In addition we also report the in vivo modification of lipoamide present in the above-mentioned E2 subunits under the stressing conditions tested and that this also occurs with the homologous enzymes present in Escherichia coli cells that were used for comparative analysis. Under fermentative conditions, the main protein targets in S. cerevisiae cells treated with hydrogen peroxide or menadione were pyruvate decarboxylase, enolase, fatty acid synthase, and glyceraldehyde-3-phosphate dehydrogenase. Under the stress conditions tested, fermenting cells exhibit a lower viability than aerobically respiring cells and, consistently, increased peroxide generation as well as higher content of protein carbonyls and lipid peroxides. Our results strongly suggest that the oxidative stress in prokaryotic and eukaryotic cells shares common features.


Subject(s)
Fungal Proteins/metabolism , Oxidative Stress , Saccharomyces cerevisiae/metabolism , Fungal Proteins/chemistry , Hydrogen Peroxide/pharmacology , Oxidation-Reduction , Saccharomyces cerevisiae/drug effects , Thioctic Acid/analogs & derivatives , Thioctic Acid/chemistry , Vitamin K/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...